期刊文献+

一种基于几何特征的表情相似性度量方法 被引量:5

A Similarity Measurement Method of Facial Expression Based on Geometric Features
下载PDF
导出
摘要 在表演驱动、表情克隆等人脸动画中,需要寻找最相似表情以提高动画真实感和逼真度.基于面部表情几何特征提出一种特征加权的表情相似性度量方法.首先,在主动外观模型上,利用链码描述各区域的形状特征以刻画局部表情细节,并根据区域特征点间的拓扑关系构建形变特征以反映整体表情信息.然后,采用特征加权方式对融合的几何特征进行相似性度量,并将权重的求解过程转化为加权目标函数最小化.最后,利用求解的权重以及特征加权函数度量表情间的相似性,寻找与之最相似的表情图像.在BU-3DFE数据库和FEEDTUM数据库上的实验结果表明,该方法在寻找相似表情的正确率方面明显高于现有的度量方法,并且对不同类型、不同强度的表情描述保持较好鲁棒性,尤其在嘴型、脸颊收缩、嘴开合幅度等表情细节维持较高相似度. In facial animations such as performance-driven and expression cloning, it needs to find the most similar expression to enhance the reality and fidelity of animations. A feature-weighted expression similarity measurement method is proposed based on facial geometric features. Firstly, chain code is used to characterize shape features for local expression regions, meanwhile deformation features are built based on topological relations among regional feature points to reflect holistic expression information. Then, feature-weighted method is adopted to measure the similarities of fused geometric features, and the solving process of feature weights is transformed to minimizing process of the weighted objective function. Finally, the solved weights as well as feature weighting functions are performed to measure similarities between two expressions and seek the most similar image with a input expression image. The experimental results on BU-3DFE database and FEEDTUM database show that the proposed method has significantly higher accuracy in seeking similar expressions than existing measurement methods, and it keeps better robustness for the expressions with different categories and different intensities, especially in local details such as the shape of mouth, the contraction of cheek, and the open-close amplitude of mouth.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2015年第5期443-451,共9页 Pattern Recognition and Artificial Intelligence
基金 国家"863"高技术研究发展计划项目(No.2012AA011103) 国家自然科学青年基金项目(No.61300119) 安徽省科技攻关项目(No.1206c0805039)资助
关键词 链码 形状特征 形变特征 特征加权 表情相似性度量 Chain Code, Shape Feature, Deformation Feature, Feature Weighting, Expression Similarity Measurement
  • 相关文献

参考文献16

  • 1Khan R A, Meyer A, Konik H, et al. Framework ibr Reliable, Real-Time Facial Expression Recognition for l.ow Resolution Ima- ges. Pattern Recognition I.etters, 2013, 34(10) : 1159-1168.
  • 2胡敏,朱弘,王晓华,许良凤.基于梯度Gabor直方图特征的表情识别方法[J].计算机辅助设计与图形学学报,2013,25(12):1856-1861. 被引量:25
  • 3Zavaschi T H H, Britto Jr A S, Oliveira L E S, et al. Fusion of Feature Sets and Classifiers for Facial Expression Recognition. Expert Systems with Applications, 2013, 40 (2) : 646-655.
  • 4Asthana A, de la Hunty M, Dhall A, et al. Facial Performance Transfer via Deformable Models and Parametric Correspondence. IEEE Trans on Visualization and Computer Graphics, 2012, 18 (9): 1511-1519.
  • 5周晓彦,郑文明,辛明海.基于稀疏表示的KCCA方法及在表情识别中的应用[J].模式识别与人工智能,2013,26(7):660-666. 被引量:4
  • 6刘帅师,田彦涛,万川.基于Gabor多方向特征融合与分块直方图的人脸表情识别方法[J].自动化学报,2011,37(12):1455-1463. 被引量:76
  • 7蒋斌,贾克斌.一种用于表情识别的局部判别分量分析算法[J].电子学报,2014,42(1):155-159. 被引量:16
  • 8Wan S H, Aggarwal J K. Spontaneous Facial Expression Recogni- tion: A Robust Metric Learning Approach. Pattern Recognition, 2014, 47(5) : 1859-18681.
  • 9Sankar A, Shechtman E, et al. Being John Malkovieh// Proc of the 11 th European Conference on Com- puter Vision. Heraklion, Greece, 2010 : 341-353.
  • 10Dhall A, Asthana A, Goecke R. A SSIM-Based Approach for Finding Similar Facial Expressions // Proc of the IEEE Interna- tional Conference on Automatic Face and Gesture Recognition and Workshops. Santa Barbara, USA, 2011 : 815-820.

二级参考文献38

共引文献118

同被引文献44

  • 1王鹏.基于颜色特征的图像检索系统[D/OL].西安:西安电子科技大学,2012[2015-08-10].http://d.wanfangdata.com.cn/Thesis/D216978DOI:10.7666/d.d216978.
  • 2Manohar V, CrandaU J W. Programming robots to express emo- tions: Interaction paradigms, communication modalities, and context[J]. IEEE Transactions on Human-Machine Systems, 2014, 44(3): 362-373.
  • 3Tadesse Y. Actuation technologies for humanoid robots with fa- cial expressions (HRwFE)[J]. Transaction on Control and Me- chanical Systems, 2013, 2(7): 337-349.
  • 4Jaeckel P, Campbell N, Melhuish C. Facial behavior mapping - From video footage to a robot head[J]. Robotics and Au- tonomous Systems, 2008, 56(12): 1042-1049.
  • 5Shayganfar M, Rich C, Sidner C. A design methodology for expressing emotion on robot faces[C]//IEEE/RSJ Internation- al Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2012: 4577-4583.
  • 6Ahn H S, Lee D W, Choi D, et al. Development of an incar- nate announcing robot system using emotional interaction with humans[J]. International Journal of Humanoid Robotics, 2013, 10(2): 1-24.
  • 7Wilbers F, Ishi C, Ishiguro H. A blendshape model for mapping facial motions to an android[C]//IEEE/RSJ International Con- ference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2007: 542-547.
  • 8Magtanong E, Yamaguchi A, Takemura K, et al. Inverse kine- matics solver for android faces with elastic skin[C]//Latest Ad- vances in Robot Kinematics. Berlin, Germany: Springer-Verlag, 2012: 181-188.
  • 9Trovato G, Zecca M, Kishi T, et al. Generation of humanoid robot's facial expressions for context-aware communication[J]. International Journal of Humanoid Robotics, 2013, 10( 1): doi, 1350013-1-22.
  • 10Microsoft. Develop for Kinect[EB/OL]. [2013-12-05]. http:// www.microsoft.com/zh-cn/kinectforwindows/.

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部