期刊文献+

改进图割的显著性区域检测算法 被引量:4

Improved algorithm of salient region detection based on graph cut
下载PDF
导出
摘要 为快速准确地提取图像中的显著性区域,提出一种改进图割的显著性区域检测算法。采用改进的图割算法对图像进行预分割,将图像分成若干子区域,在此基础上利用区域间对比度计算各区域的显著性值,得到图像的显著图,利用迭代阈值分割算法对图像显著图进行分割处理,通过图像去噪完整有效地提取出显著性区域。实验结果表明,该算法能够准确地提取出图像中的显著性区域,与传统方法相比,使用该算法提取出的显著性区域更完整、准确,提高了效率。 To detect the salient region quickly and accurately in the image ,the improved algorithm of salient region detection based on graph cuts was put forward .Firstly ,the improved graph cuts method was used to pre‐segment the image which was then divided into several sub areas .On this basis ,the regional contrast was used to calculate the salient value of each area which represented the salient map of image .Then the iterative threshold segmentation algorithm was used to segment the image salient map ,the salient region was extracted completely and effectively after image denoising .Experimental result shows that the im‐proved salient detection algorithm can extract the salient region accurately and completely ,it also promotes the efficiency .
出处 《计算机工程与设计》 北大核心 2015年第6期1560-1564,共5页 Computer Engineering and Design
基金 重庆市科委自然科学计划基金项目(2010BB2399)
关键词 显著性区域检测 区域对比度 图割 迭代阈值分割 图像去噪 salient region detection regional contrast graph cut iterative threshold segmentation image denoising
  • 相关文献

参考文献10

  • 1HUANG TieJun,TIAN YongHong,LI Jia,YU HaoNan.Salient region detection and segmentation for general object recognition and image understanding[J].Science China(Information Sciences),2011,54(12):2461-2470. 被引量:15
  • 2Achanta R, Shaji A, Smith K, et al. SLIC superpixels corn pared to state-of-the-art superpixel methods [J]. IEEE Tran- sactions on Pattern Analysis and Machine Intelligence, 2012, 34 (11): 2274-2282.
  • 3Aehanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection [C] //IEEE Conference on (5omputer Vision and Pattern Recognition. IEEE, 2009: 1597-1604.
  • 4Perazzi F, Krahenbuhl P, Pritch Y, et al. Saliency filters: Contrast based filtering for salient region detection[C] //IEEE Conference on Providence: Computer Vision and Pattern Recog- nition, IEEE, 2012: 733-740.
  • 5Arbelaez P, Maire M, Fowlkes C, et al. Contour detection and hierarchical image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (5) : 898-916.
  • 6Cheng MM, Warrell J, Lin WY, et al. Efficient salient region detection with soft image abstraction [C] //IEEE International Conference on Sydney: Computer Vision. IEEE, 2013: 1529-1536.
  • 7Vikram TN, Tscherepanow M, Wrede B. A liency map based on sampling an image into random rectangular regions of interest [J]. Pattern Recognition, 2012, 45 (9): 3114-3124.
  • 8Deng Q, Luo Y. Saliency detection by selective strategy for sa lient object segmentation [J]. Journal of Multimedia, 2012, 7 (6): 420-428.
  • 9Akther M, Ahmed M, Hasan M. Detection of Vehicle's num her plate at nighttime using iterative threshold segmentation al- gorithm [J]. International Journal of Image, Graphics Sig- nal Processing, 2013, 5 (12): 62-70.
  • 10Al-amri SS, Kalyankar NV. Image segmentation by using threshold techniques [J]. Journal of Computing, 2010, 5 (2): 83-86.

二级参考文献22

  • 1Smeulders A W M, Worring M, Santini S, et al. Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Maeh Intell, 2000, 22:1349-1380.
  • 2Lowe D G. Distinctive image features from scale-invariant keypoints. Int J Comput Vision, 2004, 60:91-110.
  • 3Bay H, Ess A, Tuytelaars T, et al. SURF: Speeded up robust features. Comput Vis Image Underst, 2008, 110:346 -359.
  • 4Deng J, Dong W, Socher R, et al. ImageNet: A large-scale hierarchical image database. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009. 248- 255.
  • 5Biederman I. Recognition-by-components: A theory of human image understanding. Psycho Rev, 1987, 94:115- 147.
  • 6Itti L, Rees G, Tsotsos J. Neurobiology of Attention. San Diego: Elsevier, 2005.
  • 7Li J, Tian Y H, Huang T J, et al. Probabilistic multi-task learning for visual saliency estimation in video. Int J Comput Vision, 2010, 90:150- 165.
  • 8Li J, Tian Y H, Huang T J, et al. Cost-sensitive rank learning from positive and unlabeled data fbr visual saliency estimation. IEEE Signal Process Lett, 2010, 17:591- 594.
  • 9Li J, Tian Y H, Huang T J, et al. Multi-task rank learning for visual saliency in video. IEEE Trans Circuits Syst Video Technol, 2011, 21:623- 636.
  • 10Itti L, Koch C, Niebnr E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell. 1998. 20:1254-1259.

共引文献14

同被引文献30

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部