期刊文献+

自适应小世界粒子群优化算法 被引量:2

Adaptive small-world particle swarm optimization
下载PDF
导出
摘要 提出一种基于小世界网络的自适应拓扑结构。每个粒子都与它的近邻粒子进行交互,其有一定概率通过小世界重置与远方的粒子进行沟通;为粒子群体的每个维度分配一个特定的小世界网络,不同维能够学习不同邻居的历史信息;粒子的邻域大小与小世界重置的概率将在种群收敛状态的基础上进行自适应调整。利用标准函数集对该算法进行测试,测试结果表明,通过该机制,粒子群体具有更好的搜索多样性,能够平衡全局探索与局部开发。 An adaptive small‐world topology was developed .Each particle interacted with its cohesive neighbors frequently and communicated to some distant particles via small‐world randomization with certain probability .Each dimension of the particle swarm was assigned with a specific small‐world network ,so that a particle learnt from the historical information from different neighbors on different dimensions .Moreover ,the neighborhood size and the probability of small‐world randomization were adap‐ted automatically according to the convergence stage of the swarm .Results of experiments performed on a benchmark test set show ,by adopting such topology ,the particle swarm not only gains better search diversity ,but also balances the global explora‐tion and local exploitation .
出处 《计算机工程与设计》 北大核心 2015年第6期1598-1607,共10页 Computer Engineering and Design
关键词 全局优化 粒子群优化 小世界网络 拓扑结构 自适应 global optimization particle swarm optimization small-world network topology adaptation
  • 相关文献

参考文献20

  • 1Gong Y-J, Zhang J, Chung H S-H, et al. An efficient re- source allocation scheme using particle swarm optimization [J]. IEEETransEvolut Comput, 2012, 16 (6): 801-816.
  • 2Gong Y-J, ZhangJ, Liu O, et al. Optimizing the vehicle rou- ting problem with time windows: a discrete particle swarm opti- mization approach [J]. IEEE Trans Syst Man Cybern Part C ApplRev, 2012, 42 (2).. 254-267.
  • 3Gong Y-J, Shen M-E, Zhang J, et al. Optimizing RFID net- work planning by using a particle swarm optimization algorithm with redundant reader elimination [J]. IEEE Trans Ind Inf, 2012, 8 (4): 900-912.
  • 4Li M, Lee W-C, Sivasuhramaniam A, et al. SSW: A small- world-based overlay for Peer-to-Peer search [J]. IEEE Trans Parallel DistribSyst, 2008, 19 (6): 735-749.
  • 5Guidoni D L, Mini R A F, Loureiro A A F. Applying the small world concepts in the design of heterogeneous wireless sensor networks [J]. IEEE Commun Lett, 2012, 16 (7): 953-955.
  • 6Watts D J, Strogatz S H. Collective dynamics of small-world networks [J]. Nature, 1998, 393: 440-442.
  • 7Newman M E J, Watts D J. Renormalization group analysis of the small-world network model [J]. Phys Lett A, 1999, 263 (4) : 341-346.
  • 8Barrat A, Weigt M. On the properties of small-world network models [J]. EurPhysJ B, 2000, 13 (3): 547-560.
  • 9Poli R, Kennedy J, Blackwell T. Particle swarm optimization an overview [J]. Swarm Intell, 2007 (1)= 33-57.
  • 10Liang J J, Suganthan P N. Dynamic multi-swarm particle swarm optimizer [C] //Proc IEEE Swarm Intell Symp, 2005: 124-129.

二级参考文献41

  • 1覃森,戴冠中,王林.节点数固定的复杂网络模型初探[J].复杂系统与复杂性科学,2005,2(2):7-12. 被引量:8
  • 2刘强,方锦清,李永,梁勇.探索小世界特性产生的一种新方法[J].复杂系统与复杂性科学,2005,2(2):13-19. 被引量:11
  • 3KENNEDY J, EBERHART R C. Particle Swarm Optimization [ C ]//Proceedings of IEEE International Conference on Neural Networks. USA : IEEE Press, 1995 : 1942-1948.
  • 4KENNEDY J, MENDES R. Population Structure and Particle Swarm Performance[ C ]//Proceedings of World Congress on Computational Intelligence. Honolulu, Hawaii : IEEE, 2002 : 1507-1512.
  • 5MENDES R, KENNDEY J, NEVES J. Watch the Neighbor or How the Swarm can Learn from Its Environment [ C ]//Proceedings of the 2003 IEEE of Swarm Intelligence Symposium. IEEE Computer Society. Indianap-olis ,2003:88-94.
  • 6BUNKLEY K J, HAGIWARA M. Particle Swarm Optimization with Area of Influence : Increasing the Effectiveness of the Swarm [ C]//Proceedings of the Swarm Intelligence Symposium. USA :IEEE 2005:45-52.
  • 7LIANG J J ,SUGANTHAN P N. Dynamic Multi-Swarm Particle Swarm Optimizer[ C ]//Proceedings of IEEE International Swarm Intelligence Symposium. USA:IEEE 2005 : 124-129.
  • 8WATFS D J, STROGATZ S H. Collective dynamics of 'small world' networks [ J ]. Nature, 1998,393:440-442.
  • 9NEWMAN M E J,WATTS D J. Renormalization group analysis of the small-world network model[J]. Physics. Letter. A, 1999, 263:341-346.
  • 10NWEMAN M E J. The structure and function of complex networks[J]. SlAM Review, 2003, 45(2) :167-256.

共引文献22

同被引文献17

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部