期刊文献+

燃油锅炉油雾燃烧过程中碳烟的排放特性 被引量:1

Emission Characteristics of Soot Particles from Combustion of Fuel Mist in a Fuel Oil Boiler
原文传递
导出
摘要 针对2t/h卧式锅壳锅炉炉膛结构及换热特点,建立了炉膛换热条件下油雾燃烧的非预混燃烧模型,研究了风速对炉内燃料燃烧及碳烟颗粒物排放特性的影响.结果表明,炉内燃料浓度在炉膛轴向0.3—0.7m的范围内快速降低,碳烟颗粒物主要在距炉膛燃料喷口0.3—1.5m的混合燃烧区内迅速生成,并随风速增大而远离喷口,生成速率在着火点位置最大.风速过大或过小都会增加碳烟颗粒物的生成,风速7.5m/s时炉膛碳烟排放浓度最小,出口浓度分布更均匀,约为0.042%(ω). A non-premixed combustion model was established based on the chamber structure and heat transfer characteristics of a 2 t/h horizontal shell oil-fired boiler, and the effect of wind speed on the mist combustion and emission characteristics of soot particles analyzed. The results showed that the fuel concentration in the chamber rapidly reduced along the axial direction in 0.3~0.7 m from the fuel nozzle. The soot particles were quickly generated in the mixed combustion zone from the fuel nozzle of 0.3-1.5 m, and went away from the nozzle with increasing of wind speed. The largest generation rate appeared at the ignition point. When the wind speed was too big or too small, the generated soot particles increased. When the wind speed was 7.5 m/s, the soot concentration was the smallest and most evenly, and its value was 0.042%(ω).
出处 《过程工程学报》 CAS CSCD 北大核心 2015年第3期468-472,共5页 The Chinese Journal of Process Engineering
基金 国家自科科学基金资助项目(编号:51275058) 湖南省教育厅一般项目资助(编号:11C0026)
关键词 锅炉 油雾 燃烧 碳烟颗粒物 排放 PDF模型 boiler combustion oil mist soot particles emission PDF model
  • 相关文献

参考文献13

  • 1Wu S R, Chang W C, Chiao J. Low NOx Heavy Fuel Oil Combustion with High Temperature Air [J]. Fuel, 2006, 86(5): 820-828.
  • 2Barroso J, Barreras F, Ballester J. Behavior of a High-capacity Steam Boiler Using Heavy Fuel Oil: Part I. High-temperature Corrosion [J]. Fuel Process. Technol., 2004, 86(2): 107-121.
  • 3Moldanova J, Fridell E, Popovichev O, et al. Characterisation of Particulate Matter and Gaseous Emissions from a Large Ship Diesel Engine [J]. Atmos. Environ., 2009, 43(2): 2632-2641.
  • 4Ambalae A, Mahinpey N, Freitag N. Thermogravimetric Studies on Pyrolysis and Combustion Behavior of a Heavy Oil and Its Asphaltenes [J]. Energy Fuels, 2006, 20(2): 560-565.
  • 5马其良,徐开义,张松寿.重油燃烧时的烟尘成分分析及治理研究[J].上海理工大学学报,1998,20(4):301-304. 被引量:1
  • 6Xu T, Huang X M. Study on Combustion Mechanism of Asphalt Binder by Using TG-FTIR Technique [J]. Fuel, 2010, 89(9): 2185-2190.
  • 7Yu J Y, Cong P L, Wu S E Investigation of the Properties of Asphalt and Its Mixtures Containing Flame Retardant Modifier [J]. Constr. Build. Mater., 2009, 23(6): 2277-2282.
  • 8Demir H, Arkis E, Balkose D, et al. Synergistic Effect of Natural Zeolites on Flame Retardant Additives [J]. Polym. Degrad. Stab., 2005, 89(3): 478-483.
  • 9Mailybaev A A, Bruining J, Marchesin D. Analysis of in situ Combustion of Oil with Pyrolysis and Vaporization [J]. Combust. Flame, 2010, 125(1): 1-12.
  • 10Zhu Q Y, Xie M H, Yang J, et al. A Fractal Model for the Coupled Heat and Mass Transfer in Porous Fibrous Media [J]. Int. J. Heat Mass Transfer, 2011, 54(7): 1400-1409.

二级参考文献11

  • 1Wiedenhoefer J F, Reitz R D. Multidimensional Modelling of the Effect of Radiation and Soot Deposition in HeavyDuty Diesel Engines [R]. SAE Technological Paper 2003- 01-0560, 2003.
  • 2LOCKWOOD F C, SHAD N G. A New Radiation Solution Method for Incorporation in General Combustion Predication Procedures [C]//Proc. 18th Symposium (Int.) on Combustion, Elsevier Inc., 1981:1405-1414.
  • 3TRUELOVE J S. A mixed gray gas model for flame radiation[R]. HarwelL United Kingdom Atomic Energy Authority Report, 1976.
  • 4Dukowicz J K. A Particle-Fluid Numerical Model for Liquid Sprays [J]. J. Comp. Physics, 1980, 35:229-253.
  • 5AVL LIST GMBH. AVL-Fire Spray [M]. Austria, 2005: 2-10-2417.
  • 6Hanjalic K, Popovac M, Hadziabdic M. A Robust Near-Wall Elliptic-Relaxation Eddy-Viscosity Turbulence Model for CFD [J]. Int. J. Heat and Fluid Flow, 2004, 25: 1047-1051.
  • 7Kong S C, Han Z, Reitz R D. The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation [R]. SAE 950278, 1995.
  • 8Zeldovich Y B. The Oxidation of Nitrogen in Combustion and Explosions [J]. Acta Physicochim, 1946, 21 : 577-582.
  • 9Hiroyasu H, Nishida K. Simplified Three-Dimensional Modelling of Mixture Formation and Combustion in a D.I. Diesel Engine [C]//SAE 890269, 1989.
  • 10Nagel J, Strickland-Constable R F. Oxidation of Carbon between 1000-2000 C [C]//Proceeding of the Fifth Carbon, New York: Pergamon Press, 1962:154.

共引文献1

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部