期刊文献+

Nanostructured lipid carrier based topical gel of Ganoderma Triterpenoids for frostbite treatment 被引量:7

Nanostructured lipid carrier based topical gel of Ganoderma Triterpenoids for frostbite treatment
原文传递
导出
摘要 The objective of this study was to prepare nanostructured lipid carrier(NLC)-based topical gel of Ganoderma Triterpenoids(GTs) and evaluate their effects on frostbite treatment. GT-NLCs was prepared by the high pressure homogenization method and then characterized by morphology and analyses of particle size, zeta potential, entrapment efficiency(EE), and drug loading(DL). The NLCs was suitably gelled for skin permeation studies in vitro and pharmacodynamic evaluation in vivo, compared with the GT emulgel. The GT-NLC remained within the colloidal range and was uniformly dispersed after suitably gelled by carbopol preparation. Transmission electron microscopy(TEM) study showed GT-NLCs was spherical in shape. The EE(%) and DL(%) could reach up to(81.84 ± 0.60)% and(2.13 ± 0.12)%, respectively. The result of X-ray diffractograms(XRD) showed that GTs were in an amorphous state in the NLC-gel. In vitro permeation studies through rat skin indicated that the amount of GTs permeated through skin of GT-NLCs after 24 h was higher than that of GT emulsion, and GT-NLCs increased the accumulative amounts of GTs in epidermis 7.76 times greater than GT emulsion. GT-NLC-gel was found to possess superior therapeutic effect for frostbite, compared with the GT emulgel. The NLC based topical gel of GTs could improve-their therapeutic effect for frostbite. The objective of this study was to prepare nanostmctured lipid carder (NLC)-based topical gel of Ganoderma Triterpenoids (GTs) and evaluate their effects on frostbite treatment. GT-NLCs was prepared by the high pressure homogenization method and then characterized by morphology and analyses of particle size, zeta potential, entrapment efficiency (EE), and drug loading (DL). The NLCs was suitably gelled for skin permeation studies in vitro and pharmacodynamic evaluation in vivo, compared with the GT emulgel. The GT-NLC remained within the colloidal range and was uniformly dispersed after suitably gelled by carbopol preparation. Transmission electron microscopy (TEM) study showed GT-NLCs was spherical in shape. The EE (%) and DL (%) could reach up to (81.84 ± 0.60)% and (2.13 ± 0.12)%, respectively. The result of X-ray diffractograms (XRD) showed that GTs were in an amorphous state in the NLC-gel. In vitro permeation studies through rat skin indicated that the amount of GTs permeated through skin of GT-NLCs after 24 h was higher than that of GT emulsion, and GT-NLCs increased the accumulative amounts of GTs in epidermis 7.76 times greater than GT emulsion. GT-NLC-gel was found to possess superior therapeutic effect for frostbite, compared with the GT emulgel. The NLC based topical gel of GTs could improve -their therapeutic effect for frostbite.
出处 《Chinese Journal of Natural Medicines》 SCIE CAS CSCD 2015年第6期454-460,共7页 中国天然药物(英文版)
基金 supported by Beijing Natural Science Foundation of China(No.7122176) National Natural Science Foundation of China(No.81102821) National Key New Drugs Innovation Foundation(Nos.2014ZX09J14106-01A and CWS11J165)
关键词 Nanostructured lipid carriers High pressure homogenization Topical gel Ganoderma Triterpenes FROSTBITE Nanostructured lipid carriers High pressure homogenization Topical gel Ganoderma Triterpenes Frostbite
  • 相关文献

参考文献3

二级参考文献12

共引文献31

同被引文献162

引证文献7

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部