期刊文献+

一致模的延拓 被引量:2

The extension of uninorms
下载PDF
导出
摘要 讨论一致模在有界格上的延拓,在有界格上引入收缩核,(r,s)-子格,收缩,e-算子等概念,并且利用收缩与e-算子方法对一致模进行延拓,使延拓后的一致模最大可能地保留原一致模的性质.同时还进一步讨论了一致模的共轭和它的延拓之间的关系. In this paper, the extensions of uninorms are studied. In bounded lattices, the concepts of retract, (r, s)-sublattice, retraction, and e-operator are introduced, the extensions of uninorms via retractions and e-operator on bounded lattices are presented, respectively. Also, the most properties of original uninorms are preserved by the extensions. Furthermore, the relationships between conjugate of uninorms and the extensions of uninorms are discussed.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2015年第2期223-233,共11页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(11171308 61379018 61472471 51305400) 青海省自然科学基金(2013-Z-913)
关键词 模糊逻辑 一致模 延拓 收缩 e-算子 fuzzy logic uninorms extension retraction e-operator
  • 相关文献

参考文献12

  • 1Palmeira E, Bedregal B, Fernandez J, et al. On the extension of lattice-valued implication via retractions [J]. Fuzzy Sets and Systems, 2014, 240: 66-85.
  • 2Saminger-Platz S, Klement E P, Mesiar 1. On extensions of triangular norms on bounded lattices [J]. Indag. Math., 2008, 19(1): 135-150.
  • 3Palmeira E S, Bedregal B, Mesiar R, et al. A new way to extend t-norm, t-conorms and negations [J]. Fzzy Sets and Systems, 2014, 240: 1-21.
  • 4Yager R R, Rybaloy A. Uninorm aggregation operators [J]. Fuzzy Sets and Systems, 1996, 80: 111-120.
  • 5Karacal F, Mesiar R. Uninorms on bounded lattices [J]. Fuzzy Sets and Systems, 2014, in press.
  • 6Fodor J, Yager R R, Rybaloy A. Structure of uninorms [J]. International Journal of Uncer- tainty, Fuzziness and Knowledge-Based Systems, 1997, 5: 411-427.
  • 7Li Yongming, Shi Zhongke. Weak uninorm aggregation operators [J]. Information Sciences, 2000, 124: 317-323.
  • 8Liu Huawen. Semi-uninorms and implications on a complete lattice [J]. Fuzzy Sets and Systems, 2012, 191: 72-82.
  • 9Liu Huawen. Distributivity and conditional distributivity of semi-uninorms over continuous t-conorms and t-norms [J]. Fuzzy Sets and Systems, 2014, in press.
  • 10Su Yong, Wang Zhudeng. Pseudo-uninorms and coimplications on a complete lattice [J]. Fuzzy Sets and Systems, 2013, 224: 53-62.

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部