摘要
讨论一致模在有界格上的延拓,在有界格上引入收缩核,(r,s)-子格,收缩,e-算子等概念,并且利用收缩与e-算子方法对一致模进行延拓,使延拓后的一致模最大可能地保留原一致模的性质.同时还进一步讨论了一致模的共轭和它的延拓之间的关系.
In this paper, the extensions of uninorms are studied. In bounded lattices, the concepts of retract, (r, s)-sublattice, retraction, and e-operator are introduced, the extensions of uninorms via retractions and e-operator on bounded lattices are presented, respectively. Also, the most properties of original uninorms are preserved by the extensions. Furthermore, the relationships between conjugate of uninorms and the extensions of uninorms are discussed.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2015年第2期223-233,共11页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(11171308
61379018
61472471
51305400)
青海省自然科学基金(2013-Z-913)
关键词
模糊逻辑
一致模
延拓
收缩
e-算子
fuzzy logic
uninorms
extension
retraction
e-operator