期刊文献+

Lyndon字串在结合代数中的一个应用

An application of Lyndon words in associative algebras
下载PDF
导出
摘要 考虑了障碍集Lyndon字串组成的代数,利用Lyndon字串的组合特性,刻画了这类代数的整体维数和Gelfand-Kirillov维数等不变量. By taking advantage of the combinatorial features of Lyndon words, the global di-mension and the Gelfand-Kirillov dimension of these algebras of which the set of obstructions consists of Lyndon words are characterized.
作者 周贵松
机构地区 浙江大学数学系
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2015年第2期245-252,共8页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(11271319)
关键词 Lyndon字串 Anick分解 整体维数 Gelfand-Kirillov维数 Lyndon words Anick resolution global dimension Gelfand-Kirillov dimension
  • 相关文献

参考文献15

  • 1Reutenauer C. Free Lie Algebras[A]. London Mathematical Society Monographs, New Series 7[C]. Oxford: Oxford University Press, 1993.
  • 2Bokut L A, Cheng Yuqun. Groebner-Shirshov bases for Lie algebras: after A.I. Shirshov[J]. Southest Asian Bulletin of Mathematics, 2007, 31: 1057-1076.
  • 3Lalonde P, Ram A. Standard Lyndon bases of Lie algebras and enveloping algebras[J]. Trans Amer Math Soc, 1995, 347(5): 1821-1830.
  • 4Kharchenko V K. A quantum analogue of Poincar@-Birkhoff-Witt theorem[J]. Alg Log, 1999, 38(4): 259-276.
  • 5Ufer S. PBW bases for a class of braided Hopf algebras[J]. J Alg, 2004, 280(1): 84-119.
  • 6Gateva-Ivanova T, F10ystad G. Monomial algebras defined by Lyndon words[J]. J Alg, 2014, 403: 470-496.
  • 7Anick D. On the homology of associative algebras[J]. Trans Amer Math Soc, 1986, 296(2): 641-659.
  • 8Anick D. On monomial algebras of finite global dimension[J]. Trans Amer Math Soc, 1985: 291(1): 291-310.
  • 9Gateva-Ivanova T. Global dimension of associative algebras[J]. Proc AAECC-6, LNCS, 1989: 357: 213-229.
  • 10Lothaire M. Combinatorics on words[A]. Encyclopedia in Mathematics and its Applica- tions[C]. GC Rota Ed., New Jersey: Addison-Wesley Publishing Company, 1983.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部