期刊文献+

Symplectic invariants for curves and integrable systems in similarity symplectic geometry 被引量:2

Symplectic invariants for curves and integrable systems in similarity symplectic geometry
原文传递
导出
摘要 In this paper, similarity symplectic geometry for curves is proposed and studied. Explicit expressions of the symplectic invariants, Frenet frame and Prenet formulae for curves in similarity symplectic geometry are obtained by using the equivariant moving frame method. The relationships between the Euclidean symplectic invariants, Frenet frame, Frenet formulae and the similarity symplectic invariants, Frenet frame, Frenet formulae for curves are established. Invariant curve flows in four-dimensional similarity symplectic geometry are also studied. It is shown that certain intrinsic invariant curve flows in four-dimensional similarity symplectic geometry are related to the integrable Burgers and matrix Burgers equations. In this paper, similarity symplectic geometry for curves is proposed and studied. Explicit expressions of the symplectic invariants, Frenet frame and Frenet formulae for curves in similarity symplectic geometry are obtained by using the equivariant moving frame method. The relationships between the Euclidean symplectic invariants, Frenet frame, Frenet formulae and the similarity symplectic invariants, Frenet frame, Frenet formulae for curves are established. Invariant curve flows in four-dimensional similarity symplectic geometry are also studied. It is shown that certain intrinsic invariant curve flows in four-dimensional similarity symplectic geometry are related to the integrable Burgers and matrix Burgers equations.
出处 《Science China Mathematics》 SCIE CSCD 2015年第7期1415-1432,共18页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11471174 and 11101332) Natural Science Foundation of Shaanxi Province(Grant No.2014JM-1002) the Natural Science Foundation of Xianyang Normal University of Shaanxi Province(Grant No.14XSYK004)
关键词 similarity symplectic geometry integrable system symplectic invariant moving frame method matrix Burgers equation 几何曲线 相似性 不变量 可积系统 Frenet标架 Burgers方程 公式曲线 不变曲线
  • 相关文献

参考文献3

二级参考文献34

  • 1Ablowitz M J, Clarkson P A. Nonlinear Evolution Equations and Inverse Scattering. Cambridge: Cambridge University Press, 1992.
  • 2Ablowitz M J, Ladik J F. Nonlinear differential-difference equations and Fourier analysis. J Math Phys, 1976, 17: 1011-1018.
  • 3Ablowitz M J, Prinari B, Trubatch A D. Discrete and Continuous Nonlinear Schr6dinger Systems. Cambridge: Cam- bridge University Press, 2004.
  • 4Alekseevsky D, Medori C, Tomassina A. Homogenous para-Kahler Einstein manifolds. Russian Math Surv, 2009, 64: 1-43.
  • 5Athorne C, Fordy A P. Generalized KdV and mKdV equations associated with symmetric spaces. J Phys A, 1987, 20: 1377 1386.
  • 6BrScker T, tom Dieck T. Representations of Compact Lie Groups. New York-Berlin-Tokyo: Springer-Verlag, 1985.
  • 7Chern S S, Peng C K. Lie groups and KdV equations. Manuscripta Math, 1979, 28:207-217.
  • 8Cruceanu V, Fortuny P, Gadea P M. A survey on paracomplex geometry. Rocky Mountain J Math, 1996, 26:83 115.
  • 9Ding Q, A discretization of the matrix Schr6dinger equation. J Phys A, 2000, 33:6769-6778.
  • 10Ding Q, Wang W, Wang Y D. A motion of spacelike curves in the Minkowski 3-space and the KdV equation. Phys Lett A, 2010, 374:3201-3205.

共引文献3

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部