期刊文献+

Commuting dual Toeplitz operators on the harmonic Bergman space 被引量:5

Commuting dual Toeplitz operators on the harmonic Bergman space
原文传递
导出
摘要 We completely characterize commuting dual Toeplitz operators with bounded harmonic symbols on the harmonic Bergman space of the unit disk. We show that for harmonic ■ and ψ, S■Sψ= SψS■ on(L2h)⊥if and only if ■ and ψ satisfy one of the following conditions:(1) Both ■ and ψ are analytic on D.(2) Both ■ and ψ are anti-analytic on D.(3) There exist complex constants α and β, not both 0, such that ■ = αψ + β.Furthermore, we give the necessary and sufficient conditions for S■Sψ= S■ψ. We completely characterize commuting dual Toeplitz operators with bounded harmonic symbols on the harmonic Bergman space of the unit disk. We show that for harmonic φ and ψ, SφSψ= SψSφ on(L2h)⊥if and only if φ and ψ satisfy one of the following conditions:(1) Both φ and ψ are analytic on D.(2) Both Ф and ψ are anti-analytic on D.(3) There exist complex constants α and β, not both 0, such that φ = αψ + β.Furthermore, we give the necessary and sufficient conditions for SφSψ= S■ψ.
出处 《Science China Mathematics》 SCIE CSCD 2015年第7期1461-1472,共12页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.10971020 and 1127059) Research Fund for the Doctoral Program of Higher Education of China
关键词 dual Toeplitz operator harmonic Bergman space Bergmau space Toeplitz算子 Bergman空间 调和 空间谐波 单位圆盘 充分条件 解析
  • 相关文献

参考文献1

二级参考文献16

  • 1Brown, A., Haloms, P. R.: Algebraic properties of Toeplitz operators. J. Reine Angew. Math., 213, 89-102 (1964).
  • 2Axler, S., Cuckovic, Z.: Commuting Toeplitz operators with harmonic symbols. Integr. Equ. Oper. Theory, 14, 1-12 (1991).
  • 3Stroethoff, K.: Essentially commuting Toeplitz oprtators with harmonic symbols. Canada. J. Math., 45, 1080-1993 (1993).
  • 4Axler, S., Cuckovic, Z., Rao, N. V.: Commuting of analytic Toeplitz operators on the Bergman space. Proc. Amer. Math. Soc., 128, 1951-1953 (2000).
  • 5Zheng, D.: Commuting Toeplitz operators with pluriharmonic symbols. Trans. Amer. Math. Soc., 350, 1595-1618 (1998).
  • 6Choe, B. R., Lee, Y. J.: Pluriharmonic symbols of commuting Toeplitz operators. Illinois J. Math., 37, 424-436 (1993).
  • 7Choe, B. R., Lee, Y. J.: Pluriharmonic symbols of essentially commuting Toeplitz operators. Illinois J. Math., 42, 280-293 (1998).
  • 8Lee, Y. J.: Pluriharmonic symbols of commuting Toeplitz type operators on the weighted Bergman spaces. Canad. Math. Bull., 41, 129-136 (1998).
  • 9Lu, Y. F.: Commuting of Toeplitz oerators on the Bergman space of the bidisc. Bull. Austral. Math. Soc., 66, 345-351 (2002).
  • 10Choe, B. R., Koo, H., Lee, Y. J.: Commuting Toeplitz operators on the polydisk. Trans. Amer. Math. Soc., 356, 1727-1749 (2002).

共引文献5

同被引文献9

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部