期刊文献+

巧用均值定理求最值

原文传递
导出
摘要 两个正数的均值定理是高中数学的必修内容,在不等式证明和代数式求最值中经常用到,因此要求同学们熟练掌握.首先,两个正数的均值定理是指:如果a、b∈(0,+∞),那么a+b/2≥ab^(1/2),当且仅当a=b时等号成立.其内容通常可概括为:两个正实数的算术平均值((a+b)/2)不小于它们的几何平均值(ab^(1/2)),其次,由均值定理可得:两个正数的积为常数时,当它们相等时和取得最小值;两个正数的和为常数时,当它们相等时积取得最大值.下面举例说明如何应用均值定理求代数式的最值(最大值或最小值).
作者 欧湘亿
出处 《中学生数学(高中版)》 2015年第6期22-23,共2页 Mathematics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部