期刊文献+

一类带跳平均场泛函随机微分方程的平稳分布

Stationary distribution of mean-field stochastic functional differential equations with jumps
原文传递
导出
摘要 平均场方法是用来研究复杂系统的重要工具,广泛应用于各个研究领域.自Buckdahn等人提出平均场倒向随机微分方程以来,平均场方法在随机分析的应用受到了越来越多学者的关注.本文研究一类L′evy过程驱动的平均场泛函随机微分方程,基于依分布收敛的思想,对其平稳分布进行分析,得到平稳分布存在唯一性的充分条件. The mean-field theory is a useful tool for studying large and complex systems, and it is extensively applied to several kinds of research areas. The mean-field method is becoming more and more popular in stochastic analysis since Buckdahn et al. introduced the mean-field stochastic differential equations to study backward stochastic differential equations. In this paper, we concentrate on mean-field stochastic functional differential equations driven by Levy process. The stationary distribution of the model is analyzed, and sufficient conditions for existence and uniqueness of stationary distribution is given.
作者 谭利
出处 《中国科学:数学》 CSCD 北大核心 2015年第5期695-702,共8页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11301230)资助项目
关键词 平均场 平稳分布 泛函随机微分方程 mean-field, stationary distribution, stochastic functional differential equations
  • 相关文献

参考文献17

  • 1Lasry J M, Lions P L. Mean field games. Jpn J Math, 2007, 2:229-260.
  • 2Buckdahn R, Djehiche B, Li J, et al. Mean-field backward stochastic differential equations: A limit approach. Ann Probab, 2009, 37:1524-1565.
  • 3Buckdahn R, Li J, Peng S. Mean-field backward stochastic differential equations and related partial differential equa- tions. Stochastic Process Appl, 2009, 119:3133-3154.
  • 4Shi Y F, Wang T X, Yong J M. Mean-field backward stochastic Volterra integral equations. ArXiv:l104.4725v2, 2011.
  • 5Wang T X, Zhu Q F, Shi Y F. Mean-field backward doubly stochastic differential equations and applications. ArXiv:1108.5590v 1, 2011.
  • 6Li Z, Luo J. Mean-field reflected backward stochastic differential equations. Statist Probab Lett, 2012, 82:1961-1968.
  • 7Zong ( F, Chen Z J. Harnack inequality for mean-field stochastic differential equations. Statist Probab Lett, 2013, 83:1424-1432.
  • 8Cai Y J, Huang J H, Maroulas V. Large deviations of mean-field stochastic differential equations with jumps. Statist Probab Lett, 2015, 96:1-9.
  • 9Mattingly J C, Stuart A M, Higham D J. Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerate noise. Stochastic Process Appl, 2001, 101:185-232.
  • 10Scheutzow M, Es-Sarhir A, van Caans O. Invariant measures for stochastic functional differential equations with superlinear drift term. Differential Integral Equations, 2010, 23:189-200.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部