摘要
平均场方法是用来研究复杂系统的重要工具,广泛应用于各个研究领域.自Buckdahn等人提出平均场倒向随机微分方程以来,平均场方法在随机分析的应用受到了越来越多学者的关注.本文研究一类L′evy过程驱动的平均场泛函随机微分方程,基于依分布收敛的思想,对其平稳分布进行分析,得到平稳分布存在唯一性的充分条件.
The mean-field theory is a useful tool for studying large and complex systems, and it is extensively applied to several kinds of research areas. The mean-field method is becoming more and more popular in stochastic analysis since Buckdahn et al. introduced the mean-field stochastic differential equations to study backward stochastic differential equations. In this paper, we concentrate on mean-field stochastic functional differential equations driven by Levy process. The stationary distribution of the model is analyzed, and sufficient conditions for existence and uniqueness of stationary distribution is given.
出处
《中国科学:数学》
CSCD
北大核心
2015年第5期695-702,共8页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11301230)资助项目
关键词
平均场
平稳分布
泛函随机微分方程
mean-field, stationary distribution, stochastic functional differential equations