期刊文献+

邻域线性最小二乘拟合的推荐支持度模型 被引量:5

A Recommendation-Support Model Using Neighborhood-Based Linear Least Squares Fitting
下载PDF
导出
摘要 针对协同过滤推荐系统在稀疏数据集条件下推荐准确度低的问题,提出了推荐支持度模型以及用于该模型计算的邻域线性最小二乘拟合的推荐支持度评分算法(linear least squares fitting,LLSF)。该模型描述用户对被推荐项目更感兴趣的可能性,通过用高支持度的评分估计取代传统的期望估计法来找出用户更喜欢的项目,从而提高推荐的准确度,并从理论上论述了该算法在稀疏数据集条件下相对其他算法具有更强的抗干扰能力。该模型还易于与其他推荐模型融合,具有很好的可拓展性。实验结果表明:LLSF算法显著提升了推荐的准确性,在MovieLens数据集上,F1分数可达到传统的kNN算法的3倍多,对于越是稀疏的数据集,准确率提升幅度越大,在Book-Crossing数据集上,当稀疏度由91%增加到99%时,F1分数的改进由22%提高到125%。同时该方法不会牺牲推荐覆盖率,可以保证长尾项目的挖掘效果。 A recommendation-support model and a neighborhood-based linear least squares fitting(LLSF)algorithm for the calculation of recommendation-support rating are proposed to solve the low accuracy problem of collaborative filtering based recommender systems on sparse data sets.The model focuses on the probability of users' more interests on the recommended items,and uses the estimation with high recommendation-support rating to replace the traditional expectation estimation so that users' preferred items are found and the accuracy of recommendation is improved.A theoretical analysis shows that the anti-interference ability of the LLSF algorithm is better than those of other algorithms under the condition of sparse data sets.The model is also expansible by integrating other models.Experimental results show that the LLSF algorithm improves the recommendation accuracy remarkably.The F1 score is 3times of that of the traditional kNN algorithm on the MovieLens data set.The more sparse the data set is,the more the improvement on accuracy obtains.When the sparsity grows from 91% to 99% on the Bookcrossing data set,the improvement on F1 scores increases from 22% to 125%.Moreover,thealgorithm can guarantee the ability of long tail mining without loss of recommendation coverage.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2015年第6期77-83,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金重点资助项目(61233003) 国家自然科学基金资助项目(61262002) 广西省自然科学基金资助项目(2013GXNSFBA019274) 广西省社科规划研究资助项目(13BXW007)
关键词 协同过滤 推荐系统 邻域线性最小二乘拟合 推荐支持度 collaborative filtering recommender system neighborhood-based linear least squaresfitting recommendation-support model
  • 相关文献

参考文献13

  • 1ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions [J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
  • 2LINDEN G, SMITH B, YORK J. Amazon. corn rec- ommendations: item-to-item collaborative filtering [J]. IEEE Internet Computing, 2003, 7(1): 76-80.
  • 3SU Xiaoyuan, KHOSHGOFTAAR T M. A survey of collaborative filtering techniques [J]. Advances in Ar- tificial Intelligence, 2009, 2009: 421425.
  • 4SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation al- gorithms [C] /// Proceedings of the 10th International Conference on World Wide Web. New York, USA: ACM, 2001: 285-295.
  • 5黄创光,印鉴,汪静,刘玉葆,王甲海.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. 被引量:217
  • 6罗辛,欧阳元新,熊璋,袁满.通过相似度支持度优化基于K近邻的协同过滤算法[J].计算机学报,2010,33(8):1437-1445. 被引量:126
  • 7ADAMOPOULOS P, TUZHILIN A. Recommenda- tion opportunities: improving item prediction using weighted percentile methods in collaborative filtering systems [C]//Proceedings of the 7th ACM Conference on Recommender Systems. New York, USA: ACM, 2013: 351-354.
  • 8吕红亮,王劲林,邓峰.多指标推荐的全局邻域模型[J].西安交通大学学报,2012,46(11):98-105. 被引量:2
  • 9KOREN Y. Factor in the neighbors: scalable and ac- curate collaborative filtering [J]. ACM Transactions on Knowledge Discovery from Data, 2010, 4 (1) : 1- 24.
  • 10DESHPANDE M, KARYPIS G. Item-based top-N recommendation algorithms [J]. ACM Transactions on Information Systems, 2004, 22(1): 143-177.

二级参考文献42

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2Goldberg D,Nichols D,Oki B,Terry D.Using collaborative filtering to weave an information tapestry.Communications of the ACM,1992,35(12):61-70.
  • 3Resnick P,Iacovou N,Suchak M,Bergstorm P,Riedl J.GroupLens:An open architecture for collaborative filtering of netnews//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work.Chapel Hill,North Carolina,United States,1994:175-186.
  • 4Shardanand U,Maes P.Social information filtering:Algorithms for automating "word of mouth"//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:210-217.
  • 5Hill M,Stead L,Furnas G.Recommending and evaluating choices in a virtual community of use//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:194-201.
  • 6Sarwar B M,Karypis G,Konstan J A,Riedl J.Application of dimensionality reduction in recommender system-A case study//Proceedings of the ACM WebKDD Web Mining for E-Commerce Workshop.Boston,MA,United States,2000:82-90.
  • 7Massa P,Avesani P.Trust-aware collaborative filtering for recommender systems.Lecture Notes in Computer Science,2004,3290:492-508.
  • 8Vincent S-Z,Boi Faltings.Using hierarchical clustering for learning the ontologies used in recommendation systems//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:599-608.
  • 9Park S-T,Pennock D M.Applying collaborative filtering techniques to movie search for better ranking and browsing//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:550-559.
  • 10Sarwar B,Karypis G,Konstan J,Reidl J.Item-based collaborative filtering recommendation algorithms//Proceedings of the 10th International Conference on World Wide Web.Hong Kong,China,2001:285-295.

共引文献316

同被引文献38

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部