期刊文献+

砂岩储层射孔压实带孔隙度与渗透率损伤研究 被引量:6

Study of porosity and permeability damage of perforation compaction zone in sandstone reservoir
下载PDF
导出
摘要 射孔孔眼是储层油气进入生产井筒的通道,聚能射孔过程会在孔眼周围砂岩储层产生不同程度的损伤。基于射孔效能物理试验和数值模拟,提出了一种用于定量评价射孔压实带孔隙度和渗透率损伤程度的方法。应用塑性随动强化材料模型表征高应变率冲击载荷下的砂岩形变特性,通过显式动力分析程序LS-DYNA数值模拟孔眼压实区域的砂岩动力学响应,获得了砂岩骨架应力、塑性应变、体积应变等关键数据,结合射孔压实带孔隙度与渗透率演化模型,量化分析了砂岩射孔压实带损伤程度。以胜利油田粒间孔隙砂岩靶为例,数值结果与靶心流动效能测试、CT扫描数据能够较好地吻合,验证了定量评价方法的有效性。结果表明,聚能射孔对压实区域砂岩的损伤主要表现为塑性挤压和剪胀两种机制。在孔道内壁区域,砂岩骨架主要受剪胀作用,孔隙度增加;但塑性挤压又改变了原始孔隙结构,造成流动通道阻塞,渗透率降低。 The perforation tunnel is the channel for transporting the hydrocarbon to the well bore. The shaped charge perforation operation, however, usually leads to some damage to the surrounding sandstone. Based on the perforation efficiency tests and numerical simulations, a new method is developed to quantitatively evaluate the porosity and permeability damage degree of the compacted zone. The kinematic-hardening plastic flow law is used to describe the sandstone deformation under high strain rate loading. Then dynamic responses of near-tunnel sandstone during perforation process are simulated by using the explicit dynamic analysis code LS-DYNA. Some key data, such as the sandstone matrix stress, plastic strain and volumetric strain are obtained. Subsequently, the damage degree of compacted zone is quantitatively analyzed by using these data together with the porosity and permeability evolution models. By comparing numerical results with the experimental results of core flow efficiency and CT scanning data from the interparticle pore Sandstone targets in Shengli oil field; good agreements are achieved, the validaty of the proposed method is verified. It is shown that, during shaped charge perforation, there are two major damage mechanisms for the compacted zone, namely, the plastic squeezing and shear swelling. Near the tunnel's inner wall, the sandstone matrix mainly suffers dilatancy actions, which enhances the porosity; meanwhile, the original structure of pore are changed due to plastic squeezing, which brings a jam to the tunnels, resulting in a reduction in permeability.
出处 《岩土力学》 EI CAS CSCD 北大核心 2015年第6期1529-1536,共8页 Rock and Soil Mechanics
基金 国家科技重大专项:精细勘探关键技术攻关与系统配套研究(No.2011ZX05006-002)
关键词 砂岩 聚能射孔 压实带 孔隙度 渗透率 损伤程度 sandstone shaped charge perforation compaction zone porosity permeability damage degree
  • 相关文献

参考文献24

  • 1SWIFT R P. Micro-mechanical modeling of perforating shock damage[C]//Formation Damage Control Conference. Lafayette, Louisiana, U.S.A.: Society of Petroleum Engineers Publishing Services, 1998.
  • 2黄风雷,孙新波,罗晓娟,李东传.贝雷砂岩射孔损害区核磁共振实验研究[J].北京理工大学学报,1999,19(S1):33-37. 被引量:4
  • 3李东传,唐国海,孙新波,姜国庆.射孔压实带研究[J].石油勘探与开发,2000,27(5):112-114. 被引量:39
  • 4王瑞飞,沈平平,宋子齐,杨华.特低渗透砂岩油藏储层微观孔喉特征[J].石油学报,2009,30(4):560-563. 被引量:175
  • 5VAJDOVA VERONIKA, ZHU WEI, CHEN TZU-MO NATALIE, et al. Micromechanics of brittle faulting and cataelastie flow in Tavel limestone[J]. Journal of Structural Geology, 2010, 32(1): 1158- 1169.
  • 6SCOTT THURMAN E, NIELSEN K C. The effects of porosity on the brittle-ductile transition in sandstones[J]. Journal of Geophysical Research, 1991, 96(B1): 405- 414.
  • 7SHELDON H A, BAMICOAT A C, ORD A. Numerical modelling of faulting and fluid flow in porous rocks: An approach based on critical state soil mechanics[J]. Journal of Structural Geology, 2006, 28: 1468- 1482.
  • 8WONG TENG-FONG, DAVID CHRISTIAN, ZHU WEN-LU. The transition from brittle faulting to cataclastic flow in porous sandstones; mechanical deformation[J]. Journal of Geophysical Research, 1997, 102(B2): 3009-3024.
  • 9宫凤强,陆道辉,李夕兵,饶秋华.不同应变率下砂岩动态强度准则的试验研究[J].岩土力学,2013,34(9):2433-2441. 被引量:24
  • 10MORRIS J P, LOMOV I N, GLENN L A. A constitutive model for stress-induced permeability and porosity evolution of Berea sandstone[J]. Journal of Geophysical Research, 2003, 108(B10): 2485-2496.

二级参考文献73

共引文献332

同被引文献54

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部