期刊文献+

用于求解休假排队网络稳态分布的预处理GMRES法

Preconditioner GMRES Method for Solving Steady State Distribution of Vacation Queueing Networks
下载PDF
导出
摘要 休假排队网络的稳态分布的计算在众多应用领域具有非常重要的意义,稳态分布向量可通过求解一个奇异的线性系统来得到.但由于该线性系统维数巨大且结构复杂,不易直接求解,本文提出了一种带分块下三角预处理算子的GMRES迭代法求解该系统.该预处理GMRES法具有易于构造且快速收敛的优点.数值试验的结果验证了该算法的优越性. The determination of the steady-state distribution of the vacation queuing, network is very important in many applications. The steady-state distribution vector can be obtained by solving a singular linear system. However, it is difficult to solve this system directly due to its huge size and complicated structure. A GMRES iterative method with a block lower trian- gular matrix preconditioner is proposed in this paper to solve this system. The preconditioner GMRES method has the advantages of easy construction and rapid convergence. Numerical examples demonstrate the superiority of the proposed algorithm.
作者 杨淑伶
出处 《工程数学学报》 CSCD 北大核心 2015年第3期391-396,共6页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金青年基金(11101095)~~
关键词 排队网络 休假 QBD过程 预处理GMRES法 queueing network vacation QBD process preconditioner GMRES method
  • 相关文献

参考文献9

  • 1Lu L Z, Ching W K, Ng M K. Exact algorithms for singular tridiagonal systems with applications to Markov chains[J]. Applied Mathematics and Computation, 2004, 159(1): 275-289.
  • 2Chan R H, Ma K C, Ching W K. Boundary value methods for solving transient solutions of Markovian queueing networks[J]. Applied Mathematics and Computation, 2006, 172(2): 690-700.
  • 3Yang S L, Cai J F, Sun H W. Multigrid algorithm from cyclic reduction for Markovian queueing networks[J]. Applied Mathematics and Computation, 2011, 217(16): 6990-7000.
  • 4Chan R H, Lee S T, Sun H W. Boundary value methods for solving transient solutions of queueing networks with variant vacation policy[J]. Journal of Computational and Applied Mathematics, 2012, 236(16): 3948- 3955.
  • 5Yue D, Yue W, Tian R. Analysis of two-server queues with a variant vacation policy[C]//the 9th Interna- tional Symposium on Operations Research and its Applications, Chengdu, 2010:483-491.
  • 6Neuts M F. Matrix-Geometric Solutions in Stochastic Models[M]. Baltimore: Johns Hopkins University Press, 1981.
  • 7Ching W K, Loh A. Iterative methods for flexible manufacturing systems[J]. International Journal of Applied Mathematics and Computer Science, 2003, 141(2-3): 553-564.
  • 8Chan R H. Iterative methods for overflow queueing models II[J]. Numerische Mathematik, 1988, 54(1) 57-78.
  • 9Saad Y. Iterative Methods for Sparse Linear Systems[M]. Philadelphia: SIAM, 2000.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部