期刊文献+

辐射流体力学的分子动理学自适应加密方法(英文) 被引量:1

Adaptive Mesh Refinement Kinetic Scheme for Equations of Radiation Hydrodynamics
下载PDF
导出
摘要 通过构造新的平衡分布函数和结合分区自适应网格加密方法,对不带扩散项的平衡辐射流体力学方程,构造二阶的分子动理学BGK-AMR格式.一方面在关心的计算区域中局部加密计算网格,提高计算精度的同时大大节省了计算网格数量和计算时间;另一方面,不同于已有的参数强耦合平衡分布函数,新构造的平衡分布函数中各参数不相互依赖,简化了辐射流体力学分子动理学格式的计算.一维和二维的数值算例显示了格式的性能. By using kinetic BGK scheme with new Maxiwellian distribution function and block-structured adaptive mesh refinement (AMR) algorithm, we construct a second-order BGK-AMR scheme for radiation hydrodynamics equation (RHE) in zero diffusion limit. Merits of the scheme are that we can reduce computational meshes and put more refinement meshes on location where should be concerned mostly, at the same time computational time is reduced greatly comparing with uniform finer meshes. And comparing with old Maxiwellian distribution for kinetic scheme of radiation hydrodynamics, parameters in new Maxwellian function are deeoupled, so construction of the scheme is simplified greatly. One- and two-dimensional numerical examples demonstrate performance of the scheme.
出处 《计算物理》 CSCD 北大核心 2015年第3期277-292,共16页 Chinese Journal of Computational Physics
基金 Supported by NSFC(11371068,11001026,10971016,40890154,91130020)
关键词 自适应网格加密 辐射流体力学 零扩散极限 BGK-AMR格式 adaptive mesh refinement(AMR) radiation hydrodynamics zero diffusion limit BGK-AMR scheme
  • 相关文献

参考文献2

二级参考文献11

  • 1Harten A, Engquist B, Osher S, Chakravarthy S R. Uniformly high-order accurate essentially nonoscillatory schemes Ⅲ [J] J Comput Phys, 1987, 71:231 -303.
  • 2Cockburn B, Karniadakis G E, Shu C W. l)iscontinuous Galerkin methods [ M ]. Berlin: Springer, 2000.
  • 3Wang Z J. Spectral (finite) volume method for conservation laws on unstructured grids: Basic formulation Phys, 2002, 178:210-251.
  • 4Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes [J]. J Comput Phys, 1996, 126:202-228.
  • 5Liu X D, Osher S, Chan T. Weighted essentially non-oscillator' schemes [J]. J Comput Phys, 1994, 115:200 -212.
  • 6Cao W M, Huang W Z, Russell R D. An r-adaptive finite element method based upon moving mesh PDEs [J]. J Comput Phys, 1999, 149:221 -244 T.
  • 7ang H Z, Tang T. Adaptive mesh methods for one-and two-dimensional hyperbolic conservation laws [ J]. SIAM J Numer Anal, 2003, 41:487-515.
  • 8Ni G X, Jiang S, Xu K. Remapping-free ALE-type kinetic method for flow computations [J]. J Comput Phys, 2009, 228: 3154 -3171.
  • 9Friedrichs O. Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids [ J]. J Comput Phys, 1998, 144:194-212.
  • 10Xu K. A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method [J]. J Comput Phys, 2001, 171:289-335.

共引文献8

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部