期刊文献+

基于状态反馈控制的无线网络拥塞控制流体流模型的Hopf分岔

Hopf Bifurcation in a Fluid-Flow Model of Congestion Control in Wireless Networks with State Feedback Control
下载PDF
导出
摘要 针对控制无线网络拥塞控制系统中流体流模型的Hopf分岔的问题,提出一种状态反馈控制器.通过选择通信时延作为分岔参数,验证模型在加入状态反馈控制器后,1增加了分岔参数的临界值,扩大了稳定性区域,使系统的Hopf分岔延迟;2通过选择合适的参数,可以容易地改变分岔周期解的稳定性及其分岔方向.理论分析和数据仿真验证了该方法能够有效地控制系统的Hopf分岔. Controlling Hopf bifurcation in a fluid-flow model for congestion control in wireless networks, we propose a state feedback controller. Choosing communication delay as a bifurcation parameter, we proved that with the controller, one can change critical value of bifurcation and enlarge stable region. Hopf bifurcation of the system is delayed. Moreover, by choosing appropriate parameters, we change easily stability and direction of bifurcating periodic solutions. Theoretical analysis and numerical results verifies that the method controls Hopf bifurcation effectively.
作者 周云龙 徐超
出处 《计算物理》 CSCD 北大核心 2015年第3期352-360,共9页 Chinese Journal of Computational Physics
关键词 无线网络 拥塞控制 HOPF分岔 状态反馈控制器 wireless networks congestion control Hopf bifurcation state feedback controller
  • 相关文献

参考文献1

二级参考文献9

  • 1Li C, Chen G, and Liao X, et al.. Hopf bifurcation in an Internet congestion control model[J]. Chaos, Solitons and Fractals, 2004, 19(4): 853-862.
  • 2Yang H and Tian Y. Hopf bifurcation in REM algorithm with communication delay[J]. Chaos, Solitons and Fractals, 2005, 25(5): 1093-1105.
  • 3Raina G and Heckmann O. TCP: Local stability and Hopf bifurcation[J]. Performance Evaluation, 2007, 64(3): 266-275.
  • 4Ding D, Zhu J, and Luo X. Hopf bifurcation analysis in a fluid flow model of Internet congestion control algorithm[J]. Nonlinear Analysis: Real World Applications, 2009, 10(2): 824-839.
  • 5Zheng F and Nelson J. An H approach to congestion control design for AQM routers supporting TCP flows in wireless networks[J]. Computer Networks, 2007, 51(6):1684-1704.
  • 6Hollot C V, Misra V, and Towsley D, et al.. Analysis and design of controllers for AQM routers supporting TCP flows[J]. IEEE Transactions on Automatic Control, 2002, 47(6): 945-959.
  • 7Cooke K and Grossman Z. Discrete delay, distributed delay and stability switches [J]. Mathematical Analysis and Applications, 1982, 86(2): 592-627.
  • 8Hale J. Theory of Functional Differential Equations [M]. New York Heidelberg Berlin, Spring-Verlag, 1977, Chapter 11.
  • 9Hassard B D, Kazarinoff N De and Wan Y H. Theory and applications of Hopf bifurcation[M]. Cambridge, Cambridge University Press, 1981, Chapter 3.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部