期刊文献+

基于主分量寻踪的鲁棒视觉跟踪

Robust Visual Tracking via Principal Component Pursuit
下载PDF
导出
摘要 传统子空间跟踪易受到模型漂移的影响而导致跟踪失败.针对此问题,本文提出一种基于主分量寻踪的鲁棒视觉跟踪方法.该方法以多个模板张成的子空间作为目标表观模型,利用主分量寻踪求解候选目标的误差分量,在粒子滤波框架下利用候选目标的误差分量估计最优状态参数.为了适应目标表观变化并克服模型漂移,本文提出一种模板更新方法.当跟踪结果与目标模板相似时,该方法利用跟踪结果更新目标模板,否则利用跟踪结果的低秩分量更新目标模板.在多个具有挑战性的图像序列上的实验结果表明:与现有跟踪方法相比,文中的跟踪方法具有较优的跟踪性能. The traditional subspaces based visual trackers are prone to model drifting. To deal with this problem, we propose a robust visual tracking method based on principal component pursuit. The proposed method represents objects with subspaces spanned by multiple templates,and finds error components of target candidates via principal component pursuit. The optimal state parameters are estimated by the error components of object candidates in particle filter framework. To adapt to changes of object ap- pearance and avoid model drifting, a template update method is proposed. The proposed method updates the template set using Irack- ing result when the tracking result is very similar to the templates;otherwise,it updates the template library with low-rank ~nt corresponding to the tracking result. The experimental results on several challenging sequences show that the proposed method has better performance than that of the state-of-the-art tracker.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第3期417-423,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61175035 No.61379105)
关键词 视觉跟踪 模型更新 主分量寻踪 稀疏分量 visual tracking model update principal component pursuit sparse component
  • 相关文献

参考文献15

  • 1Ross D, Lim J, Lin R S, et al.Incremental learning for robust visual tracking[J].International Journal of Computer Vision, 2008, 77(1-3):125-141.
  • 2Babenko B, Yang M H, Belongie S.Robust object tracking with online multiple instance learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1619-1632.
  • 3Kwon J, Lee K M.Visual tracking decomposition[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Los Alamitos:IEEE Computer Society Press, 2010.1269-1276.
  • 4Michael J Black, Allan D Jepson.Eigentracking:Robust matching and tracking of articulated objects using a view-based representation[J].International Journal of Computer Vision, 1998, 26(1):63-84.
  • 5温静,李洁,高新波.基于增量张量子空间学习的自适应目标跟踪[J].电子学报,2009,37(7):1618-1623. 被引量:7
  • 6Xue Mei, Haibin Ling.Robust visual tracking using l1 minimization[A].Proceedings of IEEE Conference on Computer Vision[C].Kyoto:IEEE Computer Society Press, 2009.1436-1443.
  • 7Mei X, Ling H B, Wu Y, et al.Minimum error bounded efficient L1 tracker with occlusion detection[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Colorado:IEEE Computer Society Press, 2011.1257-1264.
  • 8Chenglong Bao, Yi Wu, Haibin Ling, et al.Real time robust L1 tracker using accelerated proximal gradient approach[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Rhode Island:IEEE Computer Society Press, 2012.1830-1837.
  • 9Tianzhu Zhang, Bernard Ghanem, Si Liu, et al.Low-rank sparse learning for robust visual tracking[A].Proceedings of Conference on European Conference on Computer Vision[C].Florence:Springer, 2012.470-484.
  • 10John Wright, Yigang Peng, Yi Ma.Robust principal component analysis:exact recovery of corrupted low-rank matrices by convex optimization[A].Advance in Neural Information Processing Systems[C].Vancouver, B C:MIT Press, 2009.2080-2088.

二级参考文献31

  • 1胡谋法,李超,韩建涛,王书宏,陈曾平.可见光图像背景起伏的平稳性和相关性分析[J].光电工程,2006,33(3):44-49. 被引量:4
  • 2常发亮,马丽,刘增晓,乔谊正.复杂环境下基于自适应粒子滤波器的目标跟踪[J].电子学报,2006,34(12):2150-2153. 被引量:20
  • 3冯大政,保铮,焦李成.用于奇异值分解的全并行神经网络[J].电子科学学刊,1997,19(1):17-23. 被引量:1
  • 4M J Black,A D Jepson.Eigentracking:robust matching and tracking of articulated objects using a view based representation[J].International Journal of Computer Vision (IJCV),1998,26(1):63-84.
  • 5M Turk,A Pentland.Face recognition using eigenfaces[A].Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)[C].Lahaina,Maui,Hawaii,USA,June 3-6,1991.586-591.
  • 6D Comaniciu,V Ramesh,P Meer.Real-time tracking of nonrigid objects using mean shift[A].Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)[C].Hilton Head Island,South Carolina,June 13-15,2000,2:142-149.
  • 7A Levy,M Lindenbaum.Sequential Karhunen-Loeve basis extraction and its application to images[J].IEEE Transactions on Image Processing,2000,9(8):1371 -1374.
  • 8J Lim,D Ross,R S Lin,M H Yang.Incremental learning forvisual tracking[A].Proceedings of Conference on Advances in Neural Information Processing Systems (NIPS)[C].Vancouver,Canada:the MIT Press,December 5-8,2004,793-800.
  • 9D Ross,J Lim,R S Lin,M H Yang.Incremental learning for robust visual tracking[J].International Journal of Computer vision (IJCV),2008,77(1-3):125-141.
  • 10R S Lin,D Ross,J Lim,M H Yang.Adaptive discriminative generative model and its applications[A].Proceedings of Conference on Advances in Neural Information Processing Systems (NIPS)[C].Vancouver,Canada,the MIT Press,December 13-18,2004,801-808.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部