期刊文献+

脉冲神经网络的监督学习算法研究综述 被引量:27

Supervised Learning Algorithms for Spiking Neural Networks: A Review
下载PDF
导出
摘要 脉冲神经网络是进行复杂时空信息处理的有效工具,但由于其内在的不连续和非线性机制,构建高效的脉冲神经网络监督学习算法非常困难,同时也是该研究领域的重要问题.本文介绍了脉冲神经网络监督学习算法的基本框架,以及性能评价原则,包括脉冲序列学习能力、离线与在线处理性能、学习规则的局部特性和对神经网络结构的适用性.此外,对脉冲神经网络监督学习算法的梯度下降学习规则、突触可塑性学习规则和脉冲序列卷积学习规则进行了详细的讨论,通过对比分析指出现有算法存在的优缺点,并展望了该领域未来的研究方向. Spiking neural networks are shown to be suitable tools for the processing of spatio-temporal information.Howev- er, due to their intricately discontinuous and implicit nonlinear mechanisms, the formulation of efficient supervised learning algo- rithms for spiking neural networks is difficult, which is an important problem in the research area. In this paper, we introduce the general framework of supervised learning algorithms for spiking neural networks, and analyze their performance evaluations includ- ing spike trains learning ability, offline and online processing ability, the locality of learning mechanism and the applicability to net- work structure.Furthermore,we survey the advance of the research on supervised learning algorithms, which can be divided into three categories according to their differences:gradient descent rule, synaptic plasticity rule, and spike trains convolution rule. Final- ly, we discuss the advantages and disadvantages of these algorithms,and prospect the problems in current research and some future research directions in this area.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第3期577-586,共10页 Acta Electronica Sinica
基金 国家自然科学基金(No.61165002 No.61363058) 甘肃省自然科学基金(No.1010RJZA019) 甘肃省青年科技基金(No.145RJYA259)
关键词 脉冲神经网络 监督学习 反向传播 突触可塑性 卷积 spiking neural network supervised learning backpropagation synaptic plasticity convolution
  • 相关文献

参考文献59

  • 1Haykin S S.Neural Networks and Learning Machines[M].Upper Saddle River:Pearson Education, 2009.
  • 2Izhikevich E M.Which model to use for cortical spiking neurons?[J].IEEE Transactions on Neural Networks, 2004, 15(5):1063-1070.
  • 3Bohte S M.The evidence for neural information processing with precise spike-times:A survey[J].Natural Computing, 2004, 3(2):195-206.
  • 4Ghosh-Dastidar S, Adeli H.Spiking neural networks[J].International Journal of Neural Systems, 2009, 19(4):295-308.
  • 5Knudsen E I.Supervised learning in the brain[J].Journal of Neuroscience, 1994, 14(7):3985-3997.
  • 6Kasiński A, Ponulak F.Comparison of supervised learning methods for spike time coding in spiking neural networks[J].International Journal of Applied Mathematics and Computer Science, 2006, 16(1):101-113.
  • 7Quiroga R Q, Panzeri S.Principles of Neural Coding[M].Boca Raton, FL:CRC Press, 2013.
  • 8蔺想红,张田文.分段线性脉冲神经元模型的动力学特性分析[J].电子学报,2009,37(6):1270-1276. 被引量:5
  • 9Brette R, Rudolph M, Carnevale T, et al.Simulation of networks of spiking neurons:A review of tools and strategies[J].Journal of Computational Neuroscience, 2007, 23(3):349-398.
  • 10Naud R, Gerhard F, Mensi S, et al.Improved similarity measures for small sets of spike trains[J].Neural Computation, 2011, 23(12):3016-3069.

二级参考文献38

  • 1MAASS W, BISHOP C M. Pulsed neural networks [ M ]. MA : MIT Press, 2001.
  • 2SICHTIG H. Building smart machines by utilizing spiking neural networks [ C ]// Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, 2007 : 346 - 350.
  • 3MAASS W. Networks of spiking neurons: the third generation of neural network models [ J ]. Neural Networks, 1997, 10(9): 1659- 1671.
  • 4MAASS W. Fast sigmoidal networks via spiking neurons [J]. Neural Computation, 1997, 9(2): 279-304.
  • 5MAASS W. Noisy spiking neurons with temporal coding have more computational power than sigmoidal neurons [ C ]//Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1997, 9:211 - 217.
  • 6RUF B, SCHMITT M. Self-organization of spiking neurons using action potential timing [ J ]. IEEE Transactions on Neural Networks, 1998, 9 (3) : 575 - 578.
  • 7BOHTE S M, la POUTRE H, KOK J N. Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks [ J ]. IEEE Transactions Neural Networks, 2002, 13(2) : 426 -435.
  • 8MAASS W, NATSCHLAGER T. Emulation of Hopfield networks with spiking neurons in temporal coding [ M ]. Computational Neuroscience : Trends in Research. [ s. l. ] : Plenum Press, 1998 : 221 - 226.
  • 9MAASS W, NATSCHLAGER T, MARKRAM H. Real-time computing without stable states: a new framework for neural computation based on perturbations [ J ]. Neural Computation, 2002, 14( 11 ): 2531 -2560.
  • 10BOTRR S M, KOK J N, La POUTRE H. Errorbackpropagation in temporally encoded networks of spiking neurons [J]. Neurocomputing, 2002, 48 (1/4) : 17 - 37.

共引文献7

同被引文献201

引证文献27

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部