期刊文献+

一种基于稀疏化核方法的红外强杂波背景抑制算法 被引量:4

An IR Strong Clutter Background Suppression Algorithm Based on Sparse Kernel Method
下载PDF
导出
摘要 杂波背景抑制一直是红外弱小目标检测面临的难题.背景抑制可分为背景预测和差分滤波两步.针对强杂波背景呈现非线性分布的特征,提出了一种基于稀疏化核递推最小二乘(KRLS)算法的非线性背景抑制算法.算法采用监督学习模型,使用序列图像作为训练样本.通过稀疏化控制学习函数的复杂度并剔除冗余信息,不但可以提高学习机器的推广能力,还可以降低运算量.使用真实红外图像对算法进行了测试,并分析了算法参数.实验结果表明:算法可自适应预测不同类型的强杂波背景,并有效抑制背景杂波. Clutter background suppression is always a difficulty of infrared (LR) dim and point target detection. Background suppression is divided into background estimation and difference filtering. Aiming at the nonlinear distribution of strong clutter background, a spares kemel recursive least squares (KRLS) based nonlinear background suppression algorithm is proposed. This method uses sequence images as training sample in supervised learning model. The complexity of learned function is controlled, and the redundant information is discarded by sparsification. In this way, the generalization of learning machine can be enhanced; moreover, the computational burden can be reduced. In the experiments,real IR images are used to test the algorithm, and the parameters are analyzed. Experimental results show that different kinds of strong clutter background can be estimated, and then be suppressed.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第4期716-721,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61307025) 安徽省自然科学基金(No.1308085QF122)
关键词 红外背景抑制 强杂波 背景预测 稀疏 核递推最小二乘 IR background suppression strong clutter background estimation sparse kernel recursive least squares
  • 相关文献

参考文献9

  • 1Stephen J Searle.Background modeling and target segmentation via modified Kalman filtering[A].Proc SPIE 5428,Signal and Data Processing of Small Target 2004[C].SPIE,2004,13-24.
  • 2朱斌,樊祥,马东辉,程正东.核最小二乘算法检测红外点目标(英文)[J].光电工程,2009,36(9):29-34. 被引量:1
  • 3Bin Zhu,Xiang Fan,Donghui Ma,et al.Sequence IR images background estimation algorithm based on kernel exponential weighted least squares[A].Proc SPIE 7495,MIPPR 2009:Automatic Target Recognition and Image Analysis[C].SPIE,2009,doi:10.1117/12.832993.
  • 4Soni T,Zeidler J R,Ku H.Performance evaluation of 2-D adaptive prediction filters for detection of small objects in image data[J].IEEE Trans on Image Processing,1993,2(3):327-340.
  • 5V N Vapnik.Statistical Learning Theory[M].New York:John Wiley & Sons,Inc.1998.
  • 6Yaakov Engel,Shie Mannor,Ron Meir.The kernel recursive least-squares algorithm[J].IEEE Trans on Signal Processing,2004,52(8):2275-2285.
  • 7Bin Zhu,Zhengdong Cheng,Xiang Fan,et al.Online sparse IR background estimation via KRLS[A].2010 IEEE International Conference on Information and Automation(ICIA)[C].IEEE,2010.1123-1127.
  • 8John Shawe-Taylor,Nello Cristianini.Kernel Methods for Pattern Analysis[M].Cambridge University Press,2004.
  • 9Marcelo R P Ferreira,Francisco de A T de Carvalho.Kernel-based hard clustering methods in the feature space with automatic variable weighting[J].Pattern Recognition,2014,47:3082-3095.

二级参考文献9

  • 1朱斌,樊祥,马东辉,程正东.一种改进的自适应背景预测红外弱小目标检测算法[J].激光与红外,2007,37(7):683-686. 被引量:12
  • 2Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters (S 1370-4621), 1999, 9(3): 293-300.
  • 3John Shawe-Taylor, Nello Cristianini. Kernel Methods for Pattern Analysis [M]. Cambridge University Press, 2004.
  • 4Leonardo Angelini, Daniele Marinazzo, Mario Pellicoro. Kernel method for clustering based on optimal target vector [J]. Physies LettersA(S0375-9601), 2006, 357: 413-416.
  • 5Jie Wang, Haiping Lu, Plataniotis K N, et al. Gaussian kernel optimization for pattern classification [J]. Pattern Recognition(S0031-3203), 2009, 42(7): 1237-1247.
  • 6Vapnik V N. The Nature of Statistical Learning Theory [M]. New York: Springer, 1995.
  • 7Vapnik V N. Statistical Learning Theory [M]. New York: Wiley Interscience, 1998.
  • 8Klaus-Robert Muller, Sebastian Mika, Gunnar Ratsch, et al. An Introduction to kemel-based learning algorithms [J]. IEEE Trans. NeuralNetworks(S1045-9227), 2001, 12(2): 181-201.
  • 9ZHU Bin, FAN Xiang, MA Dong-hui, et al. Infrared point target detection based on exponentially weighted RLS algorithm and dual solution improvement [J]. Proe. of SPIE(S0277-786X), 2009, 7383: 73830W.

同被引文献21

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部