期刊文献+

一类2^t-差分置换多项式

A class of 2~t-difference uniform permutation polynomials
下载PDF
导出
摘要 构造了有限域F23k(k≥1)上一类二项式函数,利用有限域上单变元方程化为多变元方程组的方法证明了该函数是差分均匀度为2t(t≥1)的置换.由此得到一类APN置换和4-差分置换,并发现该两类低差分置换是已有结果的推广. By using the multivariate method solving system of equations over finite fields F23k (k≥1), a class of permutation polynomials with 2t-difference uniformity was constructed, where t≥1. A class of APN permutations and a class of 4-difference uniform permutations were obtained. Moreover, it is discovered that the two classes of low difference uniform permutations were generalizations of some known results.
出处 《华中师范大学学报(自然科学版)》 CAS 北大核心 2015年第3期344-347,共4页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金项目(70871050)
关键词 差分均匀度 置换多项式 APN函数 difference uniformity permutation polynomial APN function
  • 相关文献

参考文献11

  • 1Nyberg K. Differentially uniform mappings for cryptogram phy[C]//Advances in Cryptology EURf)CRYPT' 93. Lec- ture Notes in Computer Science, 1994, 768:55 -64.
  • 2Biham E, Shamir A. Differential cryptanalysis of DES-like cryptosystems[J]. J Cryptol, 1991, 4(1): 3-72.
  • 3Matsui M. Linear cryptanalysis method for DES cipher[C]. Lecture Notes in Computer Science, 1994, 765:386- 397.
  • 4Browning K A, Dillon J, Mcquistan M T, et al. An APN permutation in dimension six[J]. Contemporary Mathemat ics Journal of American Mathematical Society, 2010, 518 (1) :33-42.
  • 5Carlet C. Vectorial Boolean Functions for Cryptography[M]. Oxford: Cambridge University Press, 2010.
  • 6Carlet C. On known and new differentially uniform functions [C]. ACISP, 2011, 1-15.
  • 7Bracken C, Leander G. A highly nonlinear differentially 4 u- niform power mapping that permutes fields of even degree [J]. Finite Fields Appl, 2010, 16(4):231 -242.
  • 8Kasami T. Weight enumerators for several classes of the 2na order binary Reed-Muller codes[J]. Information and Con trol, 1971, 18(3):33 -49.
  • 9Blondeau C, Canteaut A, Charpin P. Differential properties of.[J]. IEEETranslnforTheory, 2011, 57(12): 8127-8137.
  • 10Budaghyan I., Carlet C, Leander G. Two classes of quad- ratic APN binomials in equivalent to power functions[J]. IEEE Trans Infor Theory, 2008, 54(9) :4218-4229.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部