期刊文献+

基于多相流模型的腔体内纳米流体自然对流换热数值模拟 被引量:5

Numerical Simulation of Natural Convective Heat Transfer Characteristics of Nanofluids in an Enclosure Using Multiphase-Flow Model
下载PDF
导出
摘要 运用多相流混合模型和单相流模型模拟了纳米流体在封闭腔体内的自然对流换热特性,将模拟结果与相应的实验值进行对比,分析了瑞利数、格拉晓夫数和纳米颗粒体积分数等物理量与努塞尔数的关系;同时,对比分析了纳米流体和纯水在水平与垂直中心截面的速度分布,以及封闭腔体内流体的温度场及流场.结果表明:基于N-S方程的单相流模型所得努塞尔数变化曲线与水的努塞尔数曲线较吻合,但不能反应纳米流体的换热特性;而基于多相流混合模型所得努塞尔数变化曲线与相应的实验结果较吻合;纳米颗粒的添加能够显著增强封闭腔体内的流体运动,有利于强化封闭腔体内流体的能量传输,起到了对流换热作用. The natural convection heat transfer and flow characteristics of nanofluids in an enclosure were numerically simulated using the multiphase-flow model and single phase model respectively. The simulated results were compared with the experimental results from the published papers to investigate the applica- bility of these models for nanofluids. The multiphase-flow model is mixture model. The effects of various parameters such as Rayleigh number, Grashof number and volume concentration of nanoparticles on the heat transfer and flow characteristics were investigated and discussed. Comparisons of the central velocity profiles between nanofluid and water for various Gr numbers were studied as well. In addition, streamlines contours and isotherms for different volume concentration were analyzed. The results show that a great de- viation exists between the simulated results based on single phase model and experimental data on Nu-Ra heat transfer curve, which indicates that the simulation based on single phase model and N-S equations cannot reflect the heat transfer characteristic of nanofluid, while the simulated results using multiphase- flow model have good agreement with the experimental data of nanofluid, which means that the multi- phase-flow model is more suitable for the numerical study of nanofluid. Moreover, nanoparticles can significantly enhance the motion of fluid in the enclosure, which is in favor of strengthening the energy trans fer in fluid. Besides, nanofluids also show the characteristic of strengthening the convection in the enclo sure.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第5期600-607,共8页 Journal of Shanghai Jiaotong University
基金 国家重点基础研究发展规划(973)项目(2013CB228303)资助
关键词 自然对流换热 纳米流体 多相流 数值计算 natural convection heat transfer nanofluid multiphase flow numerical calculation
  • 相关文献

参考文献17

  • 1Masuda H, Ebata A, Teramae K, et al. Alteration of thermal conductivity and viscosity of liquid by dis- persing ultra-fine particles (dispersions of γ-Al2O3, SiO2, and TiO2 ultra-fine particles) [J]. Netsu Bus- sei, 1993, 4(4); 227-233.
  • 2Choi S U S, Eastman J A. Enhancing thermal con- ductivity of fluids with nanoparticles[R]. USA: Ar- gonne National Lab, IL, 1995.
  • 3刘振华,廖亮.纳米流体池内沸腾时传热面上的吸附和烧结现象[J].上海交通大学学报,2007,41(3):352-356. 被引量:11
  • 4刘振华,杨雪飞.纳米流体在回路型重力热管中的沸腾传热特性[J].上海交通大学学报,2011,45(6):890-894. 被引量:4
  • 5姜未汀,丁国良,王凯建.基于颗粒团聚理论的纳米制冷剂导热系数计算[J].上海交通大学学报,2006,40(8):1272-1277. 被引量:8
  • 6Ho C J, Liu W K, Chang Y S, et al. Natural con- vection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study [J]. International Journal of Thermal Sciences, 2010, 49(8) : 1345-1353.
  • 7Putra N, Roetzel W, Das S K. Natural convection of nano-fluids[J]. Heat and Mass Transfer, 2003, 39(8-9) : 775-784.
  • 8Wen D, Ding Y. Formulation of nanofluids for natu- ral convective heat transfer applications[J]. Interna- tional Journal of Heat and Fluid Flow, 2005, 26 (6): 855-864.
  • 9Khanafer K, Vafai K, Lightstone M. Buoyancy-driv- en heat transfer enhancement in a two-dimensional en- closure utilizing nanofluids[J]. International Journal of Heat and Mass Transfer, 2003, 46(19): 3639- 3653.
  • 10Abu-Nada E, Oztop H F. Effects of inclination angle on natural convection in enclosures filled with Cu-wa- ter nanofluid[J].International Journal of Heat and Fluid Flow, 2009, 30(4): 669-678.

二级参考文献24

  • 1张海峰,葛新石,叶宏.预测复合材料导热系数的热阻网络法[J].功能材料,2005,36(5):757-759. 被引量:16
  • 2彭玉辉,黄素逸,黄锟剑.纳米颗粒强化热虹吸管传热特性的实验研究[J].热能动力工程,2005,20(2):138-141. 被引量:21
  • 3Choi U S.Enhancing thermal conductivity of fluids with nanoparticles[J].ASME FED,1995,231:99-105.
  • 4WANG Bu-xuan,ZHOU Le-ping,PENG Xiao-feng.A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles[J].International Journal of Heat Mass Transfer,2003,46(14):2665-2672.
  • 5Keblinski P,Phillpot S R,Choi U S,et al.Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)[J].International Journal of Heat Mass Transfer,2002,45 (4):855-863.
  • 6WANG Kai-jian,DING Guo-lian,JIANG Wei-ting.Development of Nanorefrigerant and its Rudiment Property[C]//WEI Qing-Ding.The 8th International Symposium on Fluid Control,Measurement and Visualization.Chengdu:China Aerodynamics Research Society,2005:276-277.
  • 7Vold M J.Computer simulation of floc formation in a colloidal suspension[J].J Coll & Inter Sci,1963,18:684-695.
  • 8Witten T A,Sander L M.Diffusion-limited aggregation,A kinetic critical phenomenon[J].Physical Review Letters,1981,47(19):1400-1403.
  • 9Paul Meakin.Diffusion-controlled cluster formation in 2-6 dimensional space[J].Physical Review A,1983,27 (3):1495-1507.
  • 10Das S K,Putra P,Raetzel W.Pool boiling characteristics of nano-fluids[J].Int J Heat Mass Transfer,2003,46:851-862.

共引文献18

同被引文献51

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部