期刊文献+

凹陷涡发生器形状对湍流流动与传热性能的影响 被引量:2

Influence of Dimple Shapes on Turbulent Flow and Heat Transfer
下载PDF
导出
摘要 利用数值计算方法研究了分别具有球形、椭球形、倾斜椭球形以及泪滴形凹陷涡发生器阵列表面的湍流传热与流阻性能.采用湍流模型Relizable k-ε、SST(Shear Stress Transportation)和Standard k-ω模拟凹陷涡发生器表面的湍流传热与流阻性能,并与其实验结果进行对比,确定了Standard k-ω是研究凹陷传热和流动的最精确湍流模型.同时,通过数值计算分析了4种凹陷结构在雷诺数为8 500-60 000下的传热、流阻和流动特性,利用Matlab软件对数值计算结果进行后处理.结果表明:与充分发展的光滑通道内湍流流动相比,球形凹陷通道的传热性能提高了约40%,摩擦因子增加了约70%;椭球形凹陷通道的传热性能提高了约30%,摩擦因子增加了60%左右;倾斜椭球形凹陷通道的传热性能提高了约40%,摩擦因子增加了60%左右;泪滴形凹陷通道的传热性能提高了约70%,摩擦因子增加了约1倍,即泪滴形凹陷通道的传热性能和综合热性能最佳。 Dimples are very effective structures to enhance heat transfer. Based on numerical simulations, this paper investigated the heat transfer and friction factor of sphere, eliptical, inclined eliptical and tear-drop dimple. Comparisons of the heat transfer and friction factor results obtained by using the Relizable k-ω, SST, and Standard k-ω models with the experimental results indicate that the Standard k-ω model can best predict the flow and heat transfer in the dimpled channels. The heat transfer and flow structure char- acteristics in the four dimpled channels have been obtained and compared with each other for the Reynolds numbers of 8 500 to 60 000. The Matlab software is used in this paper to process the numerical data to get the heat transfer distribution along the streamwise direction. The study shows that compared to the flat channel, the sphere dimple enhances the heat transfer by 40% and the friction factor by 70%; the eliptical dimple enhances the heat transfer by 30% and the friction factor by 60%;the inclined eliptical dimple en- hances the heat transfer by 40 % and the friction factor by 60 % ; and the teardrop dimple enhances the heat transfer by 70% and the friction factor by 100%. Generally speaking, the teardrop dimple has the best heat transfer and overall performance.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第5期614-619,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金项目(51176111 81027001)资助
关键词 凹陷 涡发生器 燃气轮机冷却 传热 摩擦因子 dimple vortex generator gas turbine cooling heat transfer friction factor
  • 相关文献

参考文献11

  • 1Han J C, Dutta S, Ekkad S. Gas turbine heat trans- fer and cooling technology[M]. England.. Taylor and Francis, 2001.
  • 2Rao Y, Zang S S. Flow and heat transfer characteris- tics in latticework cooling channels with dimple vortex generators[J]. ASME J Heat Transfer, 2014, 136 (2): 021017-0210110.
  • 3张翔,饶宇.具有凹陷涡发生器的网格冷却结构内的流动与传热特性[J].航空动力学报,2013,28(7):1503-1509. 被引量:1
  • 4Chyu M K, Yu Y, Ding H, et al. Concavity en- hanced heat transfer in an internal cooling passage[C] //International Gas Turbine and Aeroengine Congress and Exhibition. USA: ASME, 1997: V003T09A080- 87.
  • 5Burgess N K, Ligrani P M. Effects of dimple depth on channel Nusselt numbers and friction factors[J]. ASME Journal Heat Transfer, 2005, 127(8).. 839- 847.
  • 6Ligrani P M, Harrison J L, Mahmood G I, et al. Flow structure due to dimple depression on a channel surface[J]. Physics Fluids, 2001, 13 (11) : 3442- 3451.
  • 7Johann T, Nikolai K, Valery Z, et al. Flow struc- tures and heat transfer on dimples in a staggered ar- rangement[J]. International Journal of Heat and Fluid Flow, 2012, 35 (1): 168-175.
  • 8Kim H M, Moon M A, Kim K Y. Multi-objective optimization of a cooling channel with staggered ellip- tic dimples[J]. Energy, 2011, 36 (5): 3419-3428.
  • 9Bunker R S, Donnellan K F. Heat transfer and fric- tion factors for flows inside circular tubes with con- cavity surfaces[J]. ASME Journal of Turbomachin- ery, 200, 125 (4): 665-672.
  • 10Rao Y, Wan C, Zang S. An experimental and numer- ical study of the flow and heat transfer in channels with pin fin-dimple combined arrays of different con- figurations[J]. ASME J Heat Transfer, 2012, 134 (12) : 121901.

二级参考文献19

  • 1丁水汀,秦岭,邓宏武,陶智,徐国强,林宇震.交错肋通道换热和流阻特性的研究[J].航空动力学报,2007,22(2):205-209. 被引量:7
  • 2邓宏武,潘文艳,陶智,丁水汀.开槽交错肋通道换热和流阻特性[J].北京航空航天大学学报,2007,33(10):1158-1161. 被引量:5
  • 3Han J C,Chen H C. Turbine blade internal cooling passa-ges with ribs turbulator[J]. AIAA Journal of Propulsionand Power,2006,22(2):226-248.
  • 4Armstrong J,Winstanley D. A review of staggered arraypin fin heat transfer for turbine cooling application [ J].Journal of Turbomachinery, 1988,110(1) : 94-103.
  • 5Chyu M K. Recent advances in turbine heat transfer with aview of transition to coal-gas based systems[J]. Journal ofHeat Transfer,2012,134(3) :031006. 1-031006. 9.
  • 6RAO Yu,WAN Chaoyi,XU Yamin. An experimental stud-y of pressure loss and heat transfer in the pin fin-dimplechannels with various dimple depths [J]. InternationalJournal of Heat and Mass Transfer, 2012 , 55 ( 23/24 ):6723-6733.
  • 7RAO Yu,ZHANG Xiang,WAN Chaoyi. Pressure loss andheat transfer in channels with pin-fin dimple combined ar-rays for gas turbine cooling application[R]. ACGT2012-4095,2012.
  • 8Han B,Goldstein R J. Jet impingement heat transfer in gasturbine、systems[J]. Annals of the New York Academy ofSciences,2001,934( 1) : 147-161.
  • 9Ligrani P M, Oliveira M M, Blaskovich T. Comparison ofheat transfer augmentation techniques[J], AIAA Journal,2003,41C3):337-362.
  • 10Bunker R S. Latticework (vortex) cooling effectiveness:Part 1 stationary channel experiments[R]. ASME Paper,GT-2004-54157,2004.

同被引文献2

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部