期刊文献+

CuO纳米线储锂电化学行为与机理的原位透射电镜研究 被引量:2

In Situ Transmission Electron Microscopy Observation of the Electrochemical Behavior and Mechanism of CuO Nanowires
下载PDF
导出
摘要 过渡金属氧化物是具有前景的锂离子电池负极材料,但是其在电化学反应中的反应行为和反应机制尚不明确。利用原位透射电镜研究了CuO纳米线的首次充放电电化学反应过程。结果表明:放电过程中电化学反应界面沿着CuO纳米线轴向方向移动,且反应的界面始终保持锥形,表明Li^+离子的传输是从外向内进行的;且锂化的进行引起了纳米线的径向膨胀和轴向延长及弯曲,径向膨胀~40%,轴向膨胀~43.1%,体积膨胀~185.8%。待首次放电完成后,CuO纳米线转化为Cu纳米晶(2~3nm),分散在Li20基体中,而在去锂化后并没有氧化为CuO,而是生成了Cu2O,此不可逆的相转变是造成电池充放电循环中首次不可逆比容量损失的主要原因。 Transition metal oxides have been used as one of the most promising candidates as anode materials for lithium ion batteries (LIBs). However, their electrochemical process remains unclear. Here we directly observe the dynamic behaviors and conversion mechanism of CuO nanowire in LIBs by in situ transmission electron microscope. The results show that a reac- tion front propagates progressively along the nanowire and always keeps a conical shape during the whole process. The conical reaction interface also verifies that lithiation proceeds from the nanowire surface towards its center. After lithiation, the origi- nally straight CuO nanowire becomes heavily distorted and prolonged. The lithiation process causes an axial elongation of 43. 1%, a radial expansion of 40%, and the total volume expansion of 185%. Also, single crystalline CuO nanowires are found to transform to multicrystaUine nanowires consisting of many Cu nanograins (2 ~ 3 nm) embedded in Li2O matrix. The delithiated product is not CuO but Cu2O, accounting for the irreversible electrochemical process and the large capacity fading of the anode material in the first cycle.
出处 《中国材料进展》 CAS CSCD 北大核心 2015年第5期346-352,371,共8页 Materials China
基金 教育部新世纪优秀人才支持计划
关键词 锂离子电池 电化学行为 CuO纳米线 原位透射电镜 lithium ion battery electrochemical behavior CuO nanowire in situ transmission electron microscope
  • 相关文献

参考文献21

  • 1Tarascon J M, Annand M. Issues and Challenges Facing Re-chargeable Lithium Batteries [J]. Nature, 2001, 414:359 - 367.
  • 2Lou X W, Archer L A, Yang Z C. Hollow Miero-/Nanostruetures: Synthesis and Applications [ J]. Adv Mater, 2008, 20:3 987 - 4 019.
  • 3Poizot P, Laruelle S, Grugeon S, et al. Nano-Sized Transition- Metal Oxides as Negative EleetrodeE J]. Nature, 2000, 407:496 - 499.
  • 4Koo B, Xiong H, Slater M D, et al. Hollow Iron Oxide Nanoparti- eles for Application in Lithium Ion Batteries [ J ]. Nano Lett, 2012, 12:2 429 -2 435.
  • 5Jiang J, Li Y, Liu J, et al. Recent Advances in Metal Oxide- Based Electrode Architecture Design for Electrochemical Energy Storage[J]. Adv Mater, 2012, 24(38) : 5 166 -5 180.
  • 6Ding S, Chen J S, Lou X W. One-Dimensional Hierarchical Struc- tures Composed of Novel Metal Oxide Nanosheets on a Carbon Nanotube Backbone and Their Lithium-Storage Properties[ J ]. Adv FuncMater, 2011, 21(21):4 120 - 4 125.
  • 7Su D, Kim H S, Kim W S, et al. Mesoporous Nickel Oxide Nanowires: Hydrothermal Synthesis, Characterization and Appli- cations for Lithium-Ion Batteries and Supereapaeitors with SuperiorPerformance [ J ]. Chemistry-A European Journal, 2012, 18 (26) 8 224 -8 229.
  • 8Debart A, Dupont L, Poizot P, eta/. A Transmission Electron Mi- croscopy Study of the Reactivity Mechanism of Tailor-Made CuO Particles toward Lithium [ J ]. J Electrochem Soc, 2001, 148 ( 11 ) : A1266 - A1274.
  • 9Sahay R, Suresh Kumar P, Aravindan V, et al. High Aspect Ratio Electrospun CuO Nanofibers as Anode Material for Lithium-Ion Batteries with Superior Cycleability [ J ]. J Phys Chem C, 2012, 116(34) : 18 087 -18 092.
  • 10Cabana J, Monconduit L, Larcher D, et al. Beyond Intercalation- Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting through Conversion Reactions [ J ]. Adv Mater, 2010, 22(35): E170-E192.

同被引文献28

  • 1Chao-hsu Chen,Jincheng Du. Journal of the American Ce- ramic Society[J], 2015,98(2):534- 542.
  • 2张虎成,轩小朋,王键吉,汪汉卿.锂聚合物电解质的导电性能,化学通报[J],2003.66:09.
  • 3Ding S, Chen J S, Lou X W. One-Dimensional Hierarchi- cal Structures Composed of Novel Metal Oxide Nanosheets on a Carbon Nanotube Backbone and Their Lithium-Stor age Properties. AdvFuneMater, 2011, 21(21)= 4 120- 4 125.
  • 4Aravindan V, Sundaramurthy J, Kumar P S, Shubha N, Ling W C, Ramakrishna S. Nanoscale, 2013, 5: 10636.
  • 5Lee H, Muralidharan P, Ruffo R, MariC M, Cui Y, Kim D K. Nano Lett, 2010,10= 3852.
  • 6Alcdntara R, Jaraba M, Lavela P, Tirado J L, Zhencheva E, Stoyanova R. Chem. Mater, 2004, 16= 1573.
  • 7Pooja M. Panchmatia, A Robert Armstrong, Peter G. Bruce and M. Saiful Islam. Phys. Chem. Chem. Phys, 2014, 16: 21114.
  • 8A. R. Armstrong, C. Lyness, P. M. Panchmatia, M.S. Islam and P. G. Bruce, Nat. Mater, 2011, 10: 223.
  • 9Appetecchi G B, Scrosati B. Electrochimica Acta, 1998, 43(9) : 1105.
  • 10Manuel S A, Nahm K S. Polymer, 2006, 47: 5952.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部