期刊文献+

三明治结构银碳复合材料的制备与表征 被引量:2

Preparation and Characterization of Sandwich-Like Ag-C-Ag Nanocomposites
下载PDF
导出
摘要 随着材料技术的不断发展,纳米银逐渐进入研究者的视野,由于其具有高表面能、量子尺寸效应及体积效应,因而在光学材料、电化学材料、生物传感器材料和抗菌材料等领域得到了广泛的应用。采用一步水热法,以葡萄糖为碳源、硝酸银为银源,在水热温度190℃的条件下制备出三明治结构的银碳复合材料,该材料同时实现了碳微球对银纳米粒子的包覆与负载。利用场发射扫描电子显微镜、透射电子显微镜、傅立叶红外光谱仪、X-射线衍射仪及热重分析仪等检测手段表征了产物的形貌和结构特征。结果表明:在水热条件下碳微球同时实现了对银纳米粒子的包覆与负载;所得三明治结构复合物表面含有大量含氧官能团且表面显负电性;热重分析表明复合物的含银量约为5.51%。抗菌实验分析表明样品对大肠杆菌和金黄色葡萄球菌具有良好的抗菌性,可以作为抗菌材料。 With the development of materials technology, nano-silver material has gradually entered the view of research- ers, because of its high surface energy, quantum size effect and volume effect, it was widely used in the optical materials, electrochemical materials, biological sensors and antibacterial materials and other fields. Silver nanoparticles were encap- sulated in and loaded on a carbonaceous shell under hydrothermal condition at 190 ~C. In this one-pot synthesis, glucose was used as the reducing agent to react with Ag ~ , and also served as the source of carbonaceous shells. The morphologies and microstructures of the products were characterized by field emission scanning electron microscopy, transmission elec- tron microscopy, Fourier transformation infrared spectrometry, X-ray diffraction and thermogravimetry. These results indi- cate that the products are negatively charged and there are lots of functional groups on the surface of the products. The sil- ver content of products is about 5.51%. Moreover, the sandwich-like Ag-C-Ag nanocomposites showed strong antibacterial activity against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus.
出处 《中国材料进展》 CAS CSCD 北大核心 2015年第5期363-366,371,共5页 Materials China
基金 国家自然科学基金(21176169) 国家国际科技合作专项项目(2012DFR50460) 山西省科技创新重点团队(2012041011) 山西省回国留学人员科研资助项目(2012-038)
关键词 水热法 碳微球 银纳米粒子 包覆 负载 bydrothermal condition carbon microspheres Ag nanoparticles encapsulate load
  • 相关文献

参考文献12

  • 1程央虹.纳米银的医学应用[J].中国执业药师,2005(1):35-35. 被引量:11
  • 2Jiao L, Wang X, Diankov G, et al. Facile Synthesis of High-Qual- ity Graphene Nanoribbons [ J]. Nature nanotechnology, 2010, 5 (5) : 321 -325.
  • 3Cote L J, Cruz Silva R, Huang J. Flash Reduction and Pattern-ing of Graphite Oxide and Its Polymer Composite [ J ]. Journal of the American Chemical Society, 2009, 131 ( 31 ) : 11 027 - 11 032.
  • 4Nair R R, Blake P, Grigorenko A N, et al. Fine Structure Con- stant Defines Visual Transparency of Graphene [ J 1. Science, 2008, 320(5 881) : 1 308 -1 308.
  • 5Song J C, Rudner M S, Marcus C M, et al. Hot Carrier Transport and Photocurrent Response in Graphene[ J]. Nano letters, 2011, 11(11) ; 4 688 -4 692.
  • 6张文钲,王广文.纳米银抗菌材料研发现状[J].化工新型材料,2003,31(2):42-44. 被引量:70
  • 7YangYongzhen(杨永珍).Surface Chemistry of Carbon Microbeads(碳微球表面化学)[M].北京:化学工业出版社,2012.
  • 8Kang Z C, Wang Z L. Chemical Activities of Graphitic Carbon Spheres [ J]. Journal of Molecular Catalysis A : Chemcal, 1997, 118(2) : 215 -222.
  • 9Wang Q, Li H, Chen L Q, et al. Novel Spherical Microporous Carbon as Anode Material for Li-Ion Batteries [J]. Solid State Ion- ics, 2002, (152 -153) : 43 -50.
  • 10许并社,罗秋苹,杨永珍,郭明聪,金琳,刘旭光.银/碳微球复合材料的制备和表征[J].中国材料进展,2009,28(2):35-38. 被引量:12

二级参考文献3

共引文献89

同被引文献25

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部