摘要
As a prerequisite for effective prognostics, the goodness of the features affects the complexity of the prognostic methods. Comparing to features quality evaluation in diagnostics, features evaluation for prognostics is a new problem. Normally, the monotonic tendency of feature series can be used as the visual representation of equipment damage cumulation so that forecasting its future health states is easy to implement. Through introducing the concept of ranking mutual information in ordinal case, a monotonicity evaluation method of monitoring feature series is proposed. Finally, this method is verified by the simulating feature series and the results verify its effectivity. For the specific application in industry, the evaluation results can be used as the standard for selecting prognostic feature.
As a prerequisite for effective prognostics, the goodness of the features affects the complexity of the prognostic methods. Comparing to features quality evaluation in diagnostics, features evaluation for prognostics is a new problem. Normally, the monotonic tendency of feature series can be used as the visual representation of equipment damage cumulation so that forecasting its future health states is easy to implement. Through introducing the concept of ranking mutual information in ordinal case, a monotonicity evaluation method of monitoring feature series is proposed. Finally, this method is verified by the simulating feature series and the results verify its effectivity. For the specific application in industry, the evaluation results can be used as the standard for selecting prognostic feature.
基金
the Test Technique Research Project(No.2014SZJY3101)