期刊文献+

生化参数对耦合回路的影响

Effect of Biochemical Parameters on the Coupling Circuit
下载PDF
导出
摘要 网络组成的互连元件之间具有复杂的动态行为。一些子网通常被视为他们的特殊功能的网络模块。反馈回路在这些网络图案中发挥的重要作用。通过改变一个参数值,我们发现,耦合回路可以表现出丰富的动力学行为。我们通过分岔图分析两个耦合结构的动力作用,我们找出了耦合系统发生hopf分岔时的hill系数的区间和发生双稳态的时的压制参数的区间。 Network consisting of the complex between the interconnection elements may have a complex dynamic behavior.Some subnet usually is regarded as a network of their special function module.Feedback loop play important role in these network motifs in the.By changing the value of a parameter, we find that, the coupling loop can exhibit rich dynamic behavior. We analyze the dynamic action of two coupled structure by means of the bifurcation dlagram,we find the parameter interval of Hill coefficient when Hopf bifurcation occurs and the range of suppression parameters state when the bistability occurring.
作者 郑赟 孔唯旺
出处 《科技创新导报》 2015年第12期8-12,共5页 Science and Technology Innovation Herald
基金 国家自然科学基金资助项目(编号:91230204 30973980) 江西省自然科学基金(编号:2014BAB201012) 江西省教育厅科研计划项目(编号:GJJ13218) 江西师范大学博士启动基金(编号:4166)
关键词 hill秉数 耦合回路压朝参数hopf分岔双祷态 CoefficientsCoupling Loop Compaction Parameters Hopf bifurcationl Bistability
  • 相关文献

参考文献13

  • 1J.J.Tyson and H.G.Othmer, The dynamics of feedback control circuits in biochemical pathways,Progr.Theor. Biol. 1976,5:1-62.
  • 2A.D.Keller,Model genetic circuits encoding autoregulatory transcription factors, J.Theor. Biol. 1995,172:169-185.
  • 3R. Thomas,D.Thieffry and M. Kaufman, Dynamical behaviour of biological regulatory networks,Bull. Math.Biol,1995, 57:247-276.
  • 4K.Pye and B. Chance, Sustained sinusoidal oscillations of reduced pyridine nucleotide in a cell- free extract of Saccharomyces carlsbergensis, Proc.Natl.Acad. Sci.USA, 1996,55: 888894.
  • 5B.Hess and A.Boiteux, Oscillatory phenomena in biochemistry. Annu. Rev. Biochem, 1971,40:237-258.
  • 6C HEN Aimin ,WANG Xingwang,LIU Caixia,WANG Junwei,Coupled Feedback Loops Form Birhythmicity and Inhomogeneous Limit Cycles of Synthetic Regulatory Networks, proceeding of the 32rid Chinese control confeience, 2013.
  • 7I. Potapov,E. Volkov, Dynamics of coupled repressilatorsz The role of mRNA kinetics and Lranseription cooperativity[J].PRE ,2011,83:031901.
  • 8Qizhi Yi, Tianshou Zhou. Communication- induced multistability and multirhythmicity in a synthetic multicelouoar system[J].PRE, 2011, 83:051907.
  • 9易奇志,杜焰,周天寿.系统规模对群体行为的效果[J].物理学报,2013,62(11):534-543. 被引量:2
  • 10Q.Z.Yi,l.l. Zhang,Z.I.Yuan,etal Collective dynamics of genetic oscillators with cell-to-cell communication:a study case of signal integration[J]. Eur.Phys. 1. B, 2010,75(3): 355-372.

二级参考文献39

  • 1Nakajima A, Kaneko K 2008 J. Theor. Biol. 253 779.
  • 2Kaneno K, Yomo T 1994 Physica D 75 89.
  • 3Kaneko K, Yomo T 1997 B. Math. Biol. 59 139.
  • 4Wang J W, Chen A M, Zhang J J, Yuan Z J, Zhou T S 2009 Chin. Phys. B 18 1294.
  • 5Wang B H, Lu Q S, Lv S J, Lang X F 2009 Chin. Phys. B 18 872.
  • 6Greenwald I, Rubin G M 1992 Cell 68 271.
  • 7Armour C, Garson K, McBurney M W 1999 Exp. Cell Res. 251 79.
  • 8Garcia-Ojalvo J, Elowitz M B, Strogatz S H 2004 Proc. Natl. Acad. Sci. U.S.A. 101 10955.
  • 9Blair S S 2007 Annu. Rev. Cell Dev. Biol. 23 293.
  • 10Fields R D, Burnstock G 2006 Nat. Rev. Neurosci. 7 423.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部