期刊文献+

一类具有两个时滞的捕食模型的稳定性与Hopf分支 被引量:6

ON THE STABILITY AND HOPF BIFURCATION OF A PREDATOR-PREY MODEL WITH TWO DELAYS
原文传递
导出
摘要 研究了一类具有两个时滞和Holling-Ⅲ型功能性反应的捕食系统.首先通过对特征方程的分析得到系统平衡点的局部稳定的充分条件以及在其周围出现Hopf分支的条件,其次,在以τ_1=τ_2=τ作为分支参数,利用规范型方法和中心流形定理,得到确定周期解的分支方向,分支周期解的稳定性等显式算法.最后通过数值模拟验证了所得结论的正确性. In this paper, a predator-prey system with Holling type-Ⅲ functional response and two delays is investigated. By analyzing the characteristic equations, the local stability of each of feasible equilibria of the system is discussed and the existence of a Hopf bifurcation at the coexistence equilibrium is established. The delay τ- is used as the bifurcation parameter, we show that Hopf bifurcations can occur as τ crosses some critical values. Applying the normal form theory and center manifold argument, we obtain explicit formulas to determine the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions. Finally, some numerical simulations are carried out to illustrate the main theoretical results.
出处 《系统科学与数学》 CSCD 北大核心 2015年第5期576-587,共12页 Journal of Systems Science and Mathematical Sciences
基金 山西省自然科学基金(2013011002-2)资助课题
关键词 时滞 稳定性 捕食系统 HOPF分支 Delay; stability; predator-prey system; Hopf bifurcation.
  • 相关文献

参考文献15

  • 1Hale J K. Theory of Functional Differential Equations. New York: Springer-Verlag, 1977.
  • 2魏俊杰,张春蕊,李秀玲.具时滞的二维神经网络模型的分支[J].应用数学和力学,2005,26(2):193-200. 被引量:10
  • 3宋永利,韩茂安,魏俊杰.多时滞捕食-食饵系统正平衡点的稳定性及全局Hopf分支[J].数学年刊(A辑),2004,25(6):783-790. 被引量:27
  • 4Wei J J, Ruan S G. Stability and bifurcation in a neural network model with ytwo delay. Physica D, 1999, 130: 255-272.
  • 5陈兰荪,宋新宇,陆征一.数学生态学系统与研究方法.成都:四川科学技术出版社,2003.
  • 6马之恩.种群生态学的数学建模与研究.合肥:安徽教育出版社,1996.
  • 7王玲书,徐瑞,冯光辉.一类具有时滞和Holling Ⅲ型功能性反应的捕食模型的稳定性和Hopf分支[J].数学的实践与认识,2008,38(24):173-179. 被引量:5
  • 8Ruan S G, Ardit A, Ricciardi P, et al. Coexistence in competing models with density-dependent mortality. Comptes Rendus Biologies, 2007, 330(12): 845-854.
  • 9Ruan S G. Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator- prey systems with diserete delays. Quarterly of Appl. Math., 2001, 10(1): 159-173.
  • 10Song Y L, Han M A, Wei J J. Stability and hopfbifurcation analysis on a simplified BAM neural network with time delays. Physica D, 2005, 200(3-4): 185-204.

二级参考文献29

  • 1Kuang Y. Delay Differential Equations with Applications in Population Dynamics [M]. New York: Academic Press, 1993.
  • 2Cooke K. Grossman Z. Discrete delay, distributed delay and stability switcbes[J]. J Math Anal Appl, 1982,86: 592-627.
  • 3Hassard B, Kazarinoff N, Wan Y H. Theory and Applications of Hopf Bifurcation[M]. Soc Lect Notes, Series, 41. Cambridge; Cambridge Univ Press,1981.
  • 4Hale J, Lunel S V. Introduction to Functional Differential Equations[M]. New York:Springer-Verlag, 1993.
  • 5Kazarinoff N, Wan Y H, Van den Driessche P. Hopf bifurcation and stability of periodic solutions of differentialdiffrenee and integro-diffrence equations[J]. J Inst Math Appl,1978,21:461-477.
  • 6Meng X Z, Han D, Song Y L. Stability and bifurcation in a non-kolmogorov type prey-predator system with time delay[J]. Mathematical and Computer Modelling, 2005,41 : 1445-1455.
  • 7Ma, Z., Stability of predation models with time delay [J], Applicable Analysis, 22 (1986),169-192.
  • 8Freedman, H. I. & Rao, V. S. H., Stability criteria for a system involing two time delays[J], SIAM J. Appl. Anal., 46(1986), 552-560.
  • 9Lu, Z. & Wang, W., Global stability for two-species Lotka-Volterra systems with delay[J], J. Diff. Eqns., 208(1997), 277-280.
  • 10Freedman, H. I. & Ruan, S., Uniform persistence in functional differential equations[J], J. Diff. Eqns., 115(1995), 173-192.

共引文献39

同被引文献43

  • 1Lotka A J. Elements of Physical Biology [M]. Galtimore.. Williams and Wilkins, 1925.
  • 2SONG Yongli, WEI Junjie. Local Hopf Bifurcation and Global Periodic Solutions in a Delayed Predator-Prey System [J]. Journal of Mathematical Analysis and Applications, 2005, 301(1): 1 -21.
  • 3WEN Xianzhang, WANG Zhicheng. The Existence of Periodic Solutions for Some Models with Delay [J]. Nonlinear Analysis Real World Applications, 2002, 3(4): 567 -581.
  • 4ZHANG Yongpo, MA Mingiuan, HUANG Qingdao. Analysis of Predator-Prey Model with Disease in the Prey [J]. Journal of Jilin University (Science Edition), 2011, 49(2): 191- 194.
  • 5SONG Zhiqiang, WAN Aying. Stability and Hopf Bifurcation Analysis in a Mutualistic System with Delays [J]. Journal of Chongqing Normal University (Natural Science), 2013, 30(3): 55-58.
  • 6RUAN Shigui, WEI Junjie. Periodic Solutions of Planar Systems with Two Delays [J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1999, 129(5): 1017-1032.
  • 7WU Haihui, XIA Yonghui, LIN Muren. Existence of Positive Periodic Solution of Mutualism with Several Delays [J]. Chaos, Solitons & Fractals, 2008, 36(2): 487- 493.
  • 8WU Jianhong. Symmetric Functional Differential Equations and Neural Networks with Memory [J]. Transactions of the American Mathematical Society, 1998, 350(12): 4799-4838.
  • 9RUAN Shigui. Absolute Stability, Conditional Stability and Bifurcation in Kolmogrov-Type Predator-Prey Systems with Discrete Delays [J]. Quarterly of Applied Mathematics, 2001, 59(1) : 159-173.
  • 10YU Wenwu, CAO Jinde. Stability and Hopf Bifurcation Analysis on a Four-Neuron BAM Neural Network with Time Delays [J]. Physics Letters A, 2006, 351(1/2): 64-78.

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部