期刊文献+

次最优跳频序列集的构造

A NEW CONSTRUCTION OF SUBOPTIMAL FREQUENCY HOPPING SEQUENCE SETS
原文传递
导出
摘要 分圆类和分圆数是数论和组合数学中的经典议题.它们与差集,序列设计,以及编码理论存在着密切的关联.而寻求和设计比较理想(最优及次最优)的跳频序列(集)则是研究跳频通信技术的重要课题.文章基于广义分圆类提出一种次最优跳频序列集的构造,这些序列集具有新的参数且序列长度能为任意大于3的奇数. Cyclotomy and cyclotomic numbers are classic topics of number theory and combinatorics.They are closely related to difference sets,sequences and coding theory.To find optimal and suboptimal frequency hopping sequence sets is an important subject in the research of frequency hopping multiple-access systems.In this paper,based on a generalized cyclotomy,we propose a new construction of suboptimal frequency hopping sequence sets with respect to the Peng-Fan bound.Those frequency hopping sequence sets have parameters(v,f,e + l;(v-1)/e),where v —p_1^(m1)p_2^(m2)…p_k^(mk) is an odd integer larger than 3,p_i is prime for 1 ≤ i ≤ k,e|(p_i-1) for 1 ≤ i ≤ k and f = min {^(p_1-1)/e:1≤i≤ k}.Some of the frequency hopping sequence sets proposed in this paper can have new parameters compared with the known frequency hopping sequence sets in the literature.
出处 《系统科学与数学》 CSCD 北大核心 2015年第5期588-600,共13页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(61170257 11301161)资助课题
关键词 跳频序列 广义分圆类 广义分圆数 Peng-Fan界 Frequency hopping sequence; generalized cyclotomy; generalized cyclo-tomic number; the PengFan bound.
  • 相关文献

参考文献23

  • 1Peng D Y, Fan P Z. Lower bounds on the hamming auto and cross-correlations of frequency- hopping sequences. IEEE Trans. Inf. Theory, 2004, 50(9): 2149-2154.
  • 2Ding C, Fuji-Hara R, Fujiwara Y, Jimbo M, Mishima M. Sets of frequency hopping sequences: Bounds and optimal constructions. IEEE Trans. Inf. Theory, 2009, 55(7): 3297-3304.
  • 3Chung J H, Han Y K, Yang K. New calsses of optimal frequency-hopping sequences by interleaving techniques. IEEE Trans. Inf. Theory, 2009, 55(12): 5783-5791.
  • 4Zeng X, Cal H, Tang X, Yang Y. A class of optimal frequency hopping sequences with new parameters. IEEE Trans. Inf. Theory, 2012, 58(7): 4899-4907.
  • 5Liu F, Peng D Y, Tang X. A new set of optimal frequency-hopping sequences. IEICE Trans. Fund. of Elec., Comm. and Comput. Sci., 2010, 93-A(11): 2332-2336.
  • 6Zhou Z C, Tang X, Peng D Y, Udaya P. New constructions for optimal sets of frequency-hopping sequences. IEEE Trans. In]. Theory, 2011, 57(6): 3831-3840.
  • 7Fuji-Hara R, Miao Y, Mishima M. Optimal frequency hopping sequences: A combinatorial ap- proach. IEEE Trans. Inl. Theory, 2004, 50(10): 2408-2420.
  • 8Ge G, Fhji-hara R, Miao Y. Further combinatorial constructions for optimal frequency hopping sequences. J. Combin. Theory Ser. A, 2006, 113: 1699-1718.
  • 9Chu W, Colbourn C J. Optimal frequency-hopping sequences via cyclotomy. I EEE Trans. Inf. Theory, 2005, 51(3): 1139-1141.
  • 10Chung J H, Yang K. k-fold cyclotomy and its application to frequency-hopping sequences. IEEE Trans. Inf. Theory, 2011, 57(4): 2306-2317.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部