期刊文献+

Marcinkiewicz积分交换子的加权有界性

Weighted Boundedness for Commutators of Marcinkiewicz Integrals
原文传递
导出
摘要 证明了当零阶齐次函数Ω满足消失性及一类L~∞-Dini条件时,Marcinkiewic积分交换子μ_Ω~b是L^p(α)到L^p(β)有界的,其中,1<p<∞,α,β属于A_p权,v=(αβ^(-1))^(1/p)且b∈BMO(v). If Ωis a homogeneous function of degree zero with cancellation property and satisfies
出处 《数学的实践与认识》 北大核心 2015年第11期247-255,共9页 Mathematics in Practice and Theory
基金 黑龙江省自然科学基金(A201206)
关键词 MARCINKIEWICZ积分 交换子 A_p权 加权BMO空间 L~∞-Dini条件 marcinkiewicz integral commutator Ap weight weighted BMO space L∞Dini condition
  • 相关文献

参考文献13

  • 1Stein E M. On the function of Littlewood-Paley[J]. Lusin and Marcinkiewicz, Trans Amer Math Soc, 1958, 88: 430-466.
  • 2Torchinsky A, Wang S. A note on the Marcinkiewicz integral[J]. Colloquium Math, 1990, 60/61(1): 235-243.
  • 3Sun Q Y,. Hu G E. On the Lp Boundedness of a marcinkiewicz integral[J]. J. Hangzhou univ, 1993, 20(2): 145-158.
  • 4Ding Y, Fan D S, Pan Y B. Weighted boundedness for a class of rough Maxcinkiewicz integrals[J]. Indiana Univ Math J, 1999, 48(3): 1037-1055.
  • 5Ding Y, Lu S Z, Yabuta K. On commutators of Marcinkiewicz integrals with rough kernel[J]. J Math Anal Appl, 2002, 275(1): 60-68.
  • 6Lee J, Rim K S. Estimates of Marcinkiewicz integrals with bounded homogeneous kernels of degree zero[J]. Integr Equat Oper Th, 2004, 48(2): 213-223.
  • 7Ding Y. A note on end properties of Marcinkiewicz integral[J]. J Korean Math Soc, 2005, 42(5): 1087-1100.
  • 8He Y X, Wang Y S. Commutators of Marcinkiewicz Integrals and Weighted BMO[J]. Acta Mathe- matica Sinica Chinese Series, 2011, 54(3): 513-520.
  • 9Bloom S. A commutator theorem and weighted BMO[J]. Trans Amer Math Soc, 1985, 292(1): 103-122.
  • 10Segovia C, Torrea J L. Vector-valued commutators and applications[J]. Indiana Univ Math J, 1989, 38(4): 959-971.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部