期刊文献+

基于随机森林的长期目标跟踪方法

Long-term Target Tracking Method Based on Random Forests
下载PDF
导出
摘要 结合正负样本相互作用思想和随机森林算法构建检测器,融合基于LK光流法的跟踪器,提出一种基于TLD(Tracking Learning Detecting)的随机森林长期目标跟踪方法。将该方法与Mean-Shift算法、TLD算法进行对比,结果表明该算法能很好应对目标丢失、遮挡情况,准确率在93%以上。在多种情况下对该方法进行实验验证,可实现刚性物体和非刚性物体在复杂背景下的长时间精确跟踪。 In this paper, we propose a target tracking method based on Tracking Learning Detec-ting ( TLD) random fores by using the detector constructed by the ideas of the interaction be-tween positive and negative samples and random forest algorithm, and tracker based on LK opti-cal flow method. This method is performed the comparison with the Mean Shift algorithm and TLD method. The results show that the algorithm can have the strong robustness to target lost, target occlusion, and the accuracy rate is more than 93%. The experiment results in many cases verify that this method can achieve a long time accurate tracking for rigid and non-rigid object in complex background.
出处 《大连民族学院学报》 CAS 2015年第3期259-264,共6页 Journal of Dalian Nationalities University
基金 中央高校基本科研业务费专项资金资助项目(DC201402060303)
关键词 TLD算法 随机森林 目标跟踪 LK光流法 TLD algorithm random forest target tracking LK optical flow method
  • 相关文献

参考文献18

  • 1JORGE B, BOBER M, PLA F. Motion and intensitY based segmentation and its application to traffic monito- ring[ C ]. In Proceedings, International Conference on Image Analysis and Processing ICIAP, Florence, Italy, 1997 : 502 - 509.
  • 2MORAVEC H P. Towards automatic visual obstacle a- voidance[ C ]. In Proceedings of the 5th International Joint Conference on Artificial Intelligence, 1977.
  • 3KASS M, WITKINM A, TERZOPOULOS D. Active con- tour models [ J]. International Journal on Computer Vi- sion (IJCV), 1988, 1(4): 321-331.
  • 4MENET S, SAINT- MARC P, MEDIONI G. B - Snakes: Implementation and application to stereo [ C ]. DARPA Image Understanding Workshop, 1990, 720 - 726.
  • 5DEILAMANI M. J, ASLI R N Moving object tracking based on mean shift algorithm and features fusion [ J ]. Artificial Intelligence and Signal Processing (AISP). 2011:48-53.
  • 6KALAL Z, MIKOLAJCZYK K, MATAS J. Face - TLD :Tracking - Learning - Detection Applied to Faces [ J ]. International Conference on Image Processing, 2010.
  • 7CHEN E, XU Y, YANG X K, et al. Quaternion based optical flow estimation for robust object tracking [ J ]. Digital Signal Processing ,2013,23 ( 1 ) : 118 - 125.
  • 8陈添丁,胡鉴,吴涤.稀疏光流快速计算的动态目标检测与跟踪[J].中国图象图形学报,2013,18(12):1593-1600. 被引量:17
  • 9WANG J, CI-IEN F, YANG J M, et al. Transferring vis- ual Prior for online object tracking [ J ]. IEEE Transac- tions on Image Processing, 2012, 21 (7) : 5296 - 3505.
  • 10王爱平,万国伟,程志全,李思昆.支持在线学习的增量式极端随机森林分类器[J].软件学报,2011,22(9):2059-2074. 被引量:56

二级参考文献54

  • 1陈忠碧,张启衡,彭先蓉,任臣.基于块估计的运动目标检测方法[J].光电工程,2006,33(6):15-19. 被引量:11
  • 2王涛,李舟军,胡小华,颜跃进,陈火旺.一种高效的数据流挖掘增量模糊决策树分类算法[J].计算机学报,2007,30(8):1244-1250. 被引量:18
  • 3CHEN SH Y,HUANG Y W,HSIEH B Y.Fast video segmentation algorithm with shadow cancellation,global motion compensation and adaptive threshold techniques[J].IEEE Trans on Multimedia,2004,6(5):732-748.
  • 4COLLINS R.A system for video surveillance and monitoring:VSAM final report[R].Carnegle Mellon University.Technical Report:CMU2RI2TR200212,2000.
  • 5BARRON J,FLEET D,BEAUCHEM IN S.Performance of optical flow techniques[J].International Journal of Computer Vision,1994,12(1):42-77.
  • 6PAN F,WANG X Y.Moving object tracking research based on active vision[C].Proceedings of the 5th World Congress on Intelligent Control and Automation,Hangzhou,China,2004:3846-3849.
  • 7LIU X,CHU H X,LI P J.Research of the improved camshift tracking algorithm[C].Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation,China,2007.
  • 8CHU H X,YE SH J,GUO Q CH,et al.Object tracking algorithm based on camshift algorithm combinating with difference in frame[C].Proceedings of the IEEE International Conference on Automation and Logistics,China,2007.
  • 9HSU Y Z,NAGEL H H,REKERS G.New likelihood testthods for change detection in image sequences[J].Computer Vision,Graphics and Image Processing,1984,26(1):73-106.
  • 10QUDDUS A,FAHMY M M.An improved wavelet based corner detection technique[C].Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing,Phoenix,USA,1999.

共引文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部