摘要
利用多尺度变换将高维数据映射成低维数据,便于近邻传播聚类。仿真证明,与传统近邻传播算法相比,基于多尺度变换的近邻传播算法聚类精度高,收敛速度快。
By means of multidimensional scaling (MDS) ,the high dimensional data is mapped into the low dimensional one for convenient affinity propagation clustering . Simulations show that the method ,compared with the traditional affinity propagation , is with higher precision and higher convergence speed .
出处
《长春工业大学学报》
CAS
2015年第2期198-201,共4页
Journal of Changchun University of Technology
关键词
近邻传播算法
多尺度变换
聚类性能
affinity propagation clustering algorithm
multidimensional scaling
clustering perform