期刊文献+

沉积型海底微生物燃料电池构建及其影响因素研究 被引量:6

Study on Construction of Benthonic Microbial Fuel Cells and its Influential Factors
下载PDF
导出
摘要 海底微生物燃料电池具有底物丰富、可长期运行、维护成本低和环境友好等特点,具有很好的研究价值和广阔的发展前景。但由于其低的功率密度输出和长期运行的不稳定性,使海底微生物燃料电池尚未得到广泛地实际应用。选取海底沉积泥用于实验室构建的海底微生物燃料电池装置中,比较了在不同阳极材料、阴阳极面积比、阳极修饰、阳极泥下深度条件下海底微生物燃料电池的功率密度输出及其电化学性能,得出最佳的海底微生物燃料电池阳极材料为碳毡;阴极及电极最佳面积比为1∶1;最佳阳极修饰为氨水浸渍;最佳阳极泥下深度为2 cm。 Benthonic microbial fuel cells, with advantages of abundant sources in substrates, long-term operation, low maintenance cost and environmentally friendliness, etc, have high research value and broad prospects for development.At present, there are only limited usages for benthonic microbial fuel cells in practical application, mainly for its low power density output and long-term running instability.Therefore, this study took submarine sedimentary mud as the substrate for benthonic microbial fuel cells construction, and the cells were tested by different anode material, cathode-anode electrode area ratios, different anode modifications methods and anode depth underneath submarine sedimentary.Results showed that carbon felt was so far the best benthonic microbial fuel cell anode material, while the best cathode-anode electrode area ratio was 1∶1, the best anode modification method was ammonia treatment, and the best anode depth underneath submarine was 2 cm.
出处 《生物技术进展》 2015年第3期207-212,共6页 Current Biotechnology
基金 中国博士后科学基金(2014M551257)资助
关键词 海底微生物燃料电池 电极材料 电极面积 阳极深度 电池性能 benthonic microbial fuel cells electrode material electrode area anode depth cells performance
  • 相关文献

参考文献13

  • 1Tender L M, Gray S A, Groveman E, et al: The first demonstration of a microbial fuel cell as a viable power supply : powering a meteorological buoy [ J ]. J. Power Sour., 2008, 179(2) : 571-575.
  • 2Lowy D A, Tender L M. Harvesting energy from the marine sediment - water interface : III. Kinetic activity of quinine and antimony-based anode materials [ J J. J. Power Soar., 2008, 185(1) : 70-75.
  • 3张业龙,付玉彬,董青,刘媛媛,卢志凯.不同碳材料阳极对海底微生物燃料电池性能影响[J].现代化工,2012,32(11):55-58. 被引量:5
  • 4HongS W, Chang I S, Choi Y S, etal: Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell [ J ]. Bioresour. Technol., 2009, 100(12) : 3029-3035.
  • 5Khilari S, Pandit S, Ghangrekar M M, et al: Graphene supported ct-MnO2 nanotubes as a cathode catalyst for improved power generation and wastewater treatment in single-chambered microbial fuel cells [ J ]. RSC Adv., 2013, 3 ( 21 ) : 7902 -7911.
  • 6Reimers C E, Tender L M, Fertig S, et al: Harvesting energy from the marine sediment-water interface [ J ]. Environ. Sci. Technol., 2001, 35(1): 192-195.
  • 7An J, Kim B, Nam J, et al: Comparison in performance of sediment microbial fuel cells according to depth of embedded anode [J]. Bioresour. Technol., 2013, 127: 138-142.
  • 8Jung S, Regan J M. Comparison of anode bacterial communities and performance in microbial fuel ceils with different electron donors [J]. Appl. Microbiol. Biotechnol., 2007, 77(2): 393 -402.
  • 9An J, Lee S J, Ng H Y, et al: Determination of effects of turbulence flow in a cathode environment on electricity generation using a tidal mud-based cylindrical-type sediment microbial fuel cell [J]. J. Environ. Manag., 2010, 91 (12) : 2478-2482.
  • 10Vaessen P T M, Hanique E. A new frequency response analysis method for power transformers [ J ]. IEEE Transac. Power Deliv., 1992, 7( 1 ) : 384-391.

二级参考文献13

共引文献4

同被引文献46

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部