期刊文献+

云计算环境下基于Apriori算法的智能推荐模型

An Intelligent Recommendation Model Based on Apriori For Cloud Computing
下载PDF
导出
摘要 介绍了Apriori算法和智能推荐的基本思想,针对当前互联网应用中智能推荐复杂性问题,提出了云计算环境下基于Apriori的聚类算法模型。该模型根据用户访问网站的行为特征数据,分析和挖掘出用户期望的浏览对象,动态调整云计算系统的智能推荐内容。实验结果表明,该算法模型有效提高了智能推荐的准确性和效率。 The basis mechanism of Intelligent Recommendation is introduced. Aimed at solving the complicated issue, a new Apriori Algorithm model based on Cloud Computing is proposed. Recoding to the user's behaviors of visiting website, the adaptive viewing objects are calculated by analyzing and data mining. And the contents of Recommendation are adjusted dynamically for computing. By analyzing the experiment result on Hadoop platform, it shows that the new model based on Apriori for Cloud Computing is more efficient and more exact.
作者 金伟健
出处 《软件导刊》 2015年第6期8-10,共3页 Software Guide
基金 浙江省教育科学规划项目(2014SCG430)
关键词 Aporiori 智能推荐 云计算 MAPREDUCE HADOOP Apriori Intelligent Recommendation Cloud Computing MapReduce Hadoop
  • 相关文献

参考文献12

  • 1AGRAWAL R,SRIKANT R. Fast algorithms for mining associa-tion rules[C]. In Proceeding of the 20th International Conferenceon Very Large Databases, 1994 : 487-499.
  • 2赵卫中,马慧芳,傅燕翔,史忠植.基于云计算平台Hadoop的并行k-means聚类算法设计研究[J].计算机科学,2011,38(10):166-168. 被引量:83
  • 3周景才,张沪寅,查文亮,陈毅波.云计算环境下基于用户行为特征的资源分配策略[J].计算机研究与发展,2014,51(5):1108-1119. 被引量:35
  • 4张凯,潘晓中.云计算下基于用户行为信任的访问控制模型[J].计算机应用,2014,34(4):1051-1054. 被引量:31
  • 5M BURROWS. The chubby lock service for loosely-coupled distrib-uted systems[J]. Proceedings of the 7th symposium on Operatingsystems design and implementation,2006,6(2) : 335-350.
  • 6J BERLINSKA, M DROZDOWSKI. Scheduling divisible MapRe-duce computations[J]. Journal of Parallel and Distributed Compu-ting, 2011,3(71) : 450-459.
  • 7T SANDHOLM,K LAI. Dynamic proportional share scheduling inhadoop job scheduling strategies for parallel processing[J], Dynam-ic proportional share scheduling in hadoop Job scheduling strategiesfor parallel processing,2010,2(62) : 110-131.
  • 8K KAMBATLA. Towards optimizing hadoop provisioning in thecloud[J ]. First Workshop on Hot Topics in Cloud Computing.2009,3(2):118.
  • 9WU RONG. Cyclic workflow execution mechanism on top of Ma~pReduce framework[C]. Washington: Seventh International Con-ference on Semantics,Knowledge and Grids,2011 :28-35.
  • 10NIELSEN O M, HEGLAND M. Parallel performance of fastwavelet transform[J]. International Journal of High Speed Com-puting,2000,11(1) :55-73.

二级参考文献43

  • 1孙瑞锋,赵政文.基于云计算的资源调度策略[J].航空计算技术,2010,40(3):103-105. 被引量:43
  • 2伍之昂,罗军舟,宋爱波.基于QoS的网格资源管理[J].软件学报,2006,17(11):2264-2276. 被引量:21
  • 3冀铁果,田立勤,胡志兴,孙锦霞.可信网络中一种基于AHP的用户行为评估方法[J].计算机工程与应用,2007,43(19):123-126. 被引量:27
  • 4Han J W, Kamber M. Data mining: concepts and techniques [M]. San Francisco, US: Morgan Kaufmann, 2001.
  • 5Buyya R, Yeo C S, Venugopal S. Market-oriented cloud computing: vision,hype, and reality for delivering IT services as computing utilities, Keynote Paper [C] // Proceedings of the 10th IEEE International Conference on High Performance Computing and Communications. Dalian, China, 2009 :25-27.
  • 6Armbrust M, Fox A. Above the clouds: a Berkeley view of cloud computing[R]. USA: University of California at Berkeley, 2009.
  • 7Erdogmus H. Cloud computing., does nirvana hide behind the nebula[J]. IEEE Software, 2009,26 (2) : 4-6.
  • 8Ghemawat S,Gobioff H, Leung S. The google file system[J].S ACM SIGOPS Operating Systems Review, 2003,37 (5) : 29-43.
  • 9Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters [C] /// Proceedings of Operating Systems Design and Implementation. San Franciseo, CA, 2004 : 137-150.
  • 10Xu X W, Jager J, Kriegel H P. A fast parallel clustering algorithm for large spatial databases[J]. Data Mining and Knowledge Discovery,1999,3(3) :263-290.

共引文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部