期刊文献+

机动目标跟踪的S修正无迹卡尔曼滤波算法 被引量:9

The algorithm of S-amended UKF in maneuvering target tracking
原文传递
导出
摘要 针对非线性观测条件下的非线性机动目标跟踪问题,借鉴线性滤波中卡尔曼滤波器的S修正防发散思想,对基本无迹卡尔曼滤波算法进行改进,提出S修正无迹卡尔曼滤波(SUKF)方法.对二维机动目标跟踪的仿真结果表明,该算法与基本UKF算法相比,跟踪精度大幅提高,但计算时间略有增加;与SPPF算法相比,跟踪精度提高,且计算复杂度大幅降低,计算时间大幅缩减. Aiming at the problem of maneuvering target track- ing under nonlinear observation, an S-amended unscented Kalman filtering (SUKF) was developed by using the idea of S-amended anti-divergent method for Kalman filter in linear filtering and improving the performance of unscented Kalman filtering algorithm. Two-dimensional maneuvering target track- ing simulations were carried out, and results show that tracking accuracy is significantly improved comparing with the bas- ic UKF algorithm, but calculation time increases slightly. Comparing with the basic UKF algorithm, tracking accuracy is improved, and calculation time reduces significantly.
出处 《大连海事大学学报》 CAS CSCD 北大核心 2015年第2期84-86,共3页 Journal of Dalian Maritime University
基金 国家自然科学基金资助项目(61074053 61374114) 交通部应用基础研究项目(2011-329-225-390)
关键词 机动目标跟踪 无迹卡尔曼滤波(UKF) S修正 maneuvering target tracking unscented Kalman filter (UKF) S-amended
  • 相关文献

参考文献8

  • 1JULIER S J. The spherical simplex unscented transfor- mation [ C ]//IEEE American Control Conference. New York, U.S. : IEEE Press, 2003: 2430- 2434.
  • 2JULIER S J, UHLMANN J K. The scaled unscented transformation [ C]//IEEE American Control Confer- ence. New York, U. S. : IEEE Press, 2002:4555 - 4559.
  • 3JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation [ J ]. Proceedings of the IEEE, 2004,92(3 ) :401 - 422.
  • 4WAN E A, Van der MERWE R. The unscented Kalman filter for nonlinear estimation [ C ]//IEEE Adaptive Sys- tems for Signal Processing, Communications and Control symposium 2000. Lake Louise, Aha: IEEE Press, 2000:153 - 158.
  • 5朱安福,景占荣,高田,羊彦,张安学.基于UKF的交互多模型算法[J].系统仿真学报,2009,21(3):655-657. 被引量:17
  • 6程水英.无味变换与无味卡尔曼滤波[J].计算机工程与应用,2008,44(24):25-35. 被引量:27
  • 7YU Zhi-jun, WEI Jian-ming, LIU Hai-tao. A new adap- tive maneuvering target tracking algorithm using articial neural networks [ C]/! 2008 International Joint Confer- ence on Neural Networks. Hong Kong: IEEE Press, 2008:901 - 905.
  • 8张园.卡尔曼滤波及其军事应用[M].大连:海军大连舰艇学院出版社,2010:103-108.

二级参考文献22

共引文献43

同被引文献77

  • 1何四华,李天伟,韩云东.虚拟现实技术及其在航海仿真中的应用[J].舰船科学技术,2004,26(5):54-56. 被引量:5
  • 2崔鹏程,邱宏波.舰载导弹用捷联惯导系统校准技术研究[J].中国惯性技术学报,2007,15(1):12-15. 被引量:6
  • 3Valverde G, Terzija V. Unscented Kalman .filter for power system dynamic state estimation[J]. IET gener- ation, transmission distribution, 2011,5 (1) : 29-37.
  • 4A1-Hussein A, Haldar A. Novel Unscented Kalman Filter for Health Assessment of Structural Systems with Unknown Input[J]. Journal of Engineering Me- chanics, 2015,5(4) .. 12-15.
  • 5陈宁,胡小军,桂卫华,等.基于无迹卡尔曼滤波的锂电池SOC和SOH的估算方法[C]//第26届中国控制与决策会议论文集,2014.
  • 6Wan E, Van Der Merwe R. The unscented Kalman filter for nonlinear estimation[C]//Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. The IEEE 2000. IEEE, 2000 .. 153-158.
  • 7J. Carney, P. Cunningham, U. Bhagwan. Confidence and prediction intervals for neural network ensembles [C]//International Joint Conference on Neural Net works, IJCNN'99, Washington, DC, 10 16 July, 1999:1215 1218.
  • 8D. Nix, A. Weigend. Estimating the mean and the variance of the target probability distribution[C]// Proceedins of IEEE International Conference on Neu- ral Networks, World Congreson Computational Intel- ligence, vol. 1, Orlando, FL, 27 June-02 July, 1994.. 55-60.
  • 9A. M. Zoubir, 13. Boashash. The bootstrap and its application[J]. IEEE Signal Processing Magazine, 1998,1:56-76.
  • 10Deng N, Allison J J, Fang H J, et al. Using the boot- strap to establish statistical significance for relative va-lidity comparisons among patient-reported outcome measures[J]. Health Qual Life Outcomes, 2013 11- 89.

引证文献9

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部