期刊文献+

基于深度学习的盲文识别方法 被引量:8

A Deep Learning Method for Braille Recognition
下载PDF
导出
摘要 提出一种基于深度学习的盲文点字识别方法,利用深度模型——堆叠去噪自动编码器(Stack Denoising Auto Encoder,SDAE)解决盲文识别中特征的自动提取与降维等问题。在构建深度模型过程中,采用非监督贪婪逐层训练算法(Greedy Layer-Wise Unsupervised Learning Algorithm)初始化网络权重,使用反向传播算法优化网络参数。利用SDAE自动学习盲文点字图片特征,使用Softmax分类器进行识别。实验结果表明,本文所提方法较之传统方法,可以有效解决样本特征的自动学习与特征降维等问题,操作更为简易,并能获得满意的识别结果。 This paper mainly proposes a deep learning method, using Stacked Denoising AutoEncoder ( SDAE) to solve the prob-lems of automatic feature extraction and dimension reduction in Braille recognition. In the construction of a network with deep ar-chitecture, a feature extractor was trained with unsupervised greedy layer-wise training algorithm to initialize the weights for ex-tracting features from Braille images, and then a following classifier was set up for recognition. The experimental results show that comparing to traditional methods, the constructed network based on the deep learning method can easily recognize Braille images with satisfied performance. The deep learning model can effectively solve the Braille recognition problem in automatic feature ex-traction and dimension reduction with a reduced preprocessing.
作者 李婷
出处 《计算机与现代化》 2015年第6期37-40,共4页 Computer and Modernization
关键词 盲文识别 深度学习 特征提取 神经网络 SDAE Braille recognition deep learning feature extraction SDAE neural network
  • 相关文献

参考文献18

  • 1张贵建. 盲人高等中医教育——中诊教程的改革与思考[EB/OL]. http://www.zgmx.org.cn/ViewInfo.asp?id=1958, 2007-04-02.
  • 2Zhang Shanjun, Yoshino Kazuyoushi. A braille recognition system by the mobile phone with embedded camera[C]// 2007 the 2rd International Conference Innovation Computing, Information and Control (ICICIC). Japan, 2007:223.
  • 3尹佳,李杰,王丽荣.盲文自动识别方法研究[J].长春大学学报,2010,20(8):54-56. 被引量:5
  • 4李念峰,董迎红,肖志国.基于图像处理的盲文自动识别系统研究[J].制造业自动化,2012,34(3):63-67. 被引量:4
  • 5Poirson P, Idrees H. Multimodal Stacked Denoising Autoencoders[EB/OL]. http://crcv.ucf.edu/REU/reu2013/patrick_poirson/report.pdf, 2014-11-05.
  • 6Baldi P. Autoencoders, unsupervised learning, and deep architectures[J]. JMLR: Workshop and Conference Proceedings. 2012,27:37-50.
  • 7Glüge S, Bck R, Wendemuth A. AutoEncoder PreTraining of SegmentedMemory recurrent neural networks[C]// Proceedings of the 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning(ESANN 2013). 2013:29-34.
  • 8Lu Xugang, Tsao Y, Matsuda S, et al. Speech enhancement based on deep denoising autoencoder[C]// The 14th Annual Conference of the International Speech Communication Association. 2013:436440.
  • 9Vincent P. A connection between score matching and denoising autoencoders[J]. Neural Computation, 2011,23(7):16611674.
  • 10Chen Minmin, Xu Zhixiang, Weinberger K, et al. Marginalized denoising autoencoders for domain adaptation[C]// Proceedings of the 29th International Conference on Machine Learning. 2012:1-8.

二级参考文献12

  • 1包塔,朱小燕.盲汉转换系统的研究与实现[J].计算机工程,2004,30(20):45-46. 被引量:4
  • 2何川.国内信息无障碍的现状及展望[J].现代电信科技,2007(3):4-8. 被引量:27
  • 3R. Lienhat, A. Wernicke. Localizing and segmenting text in image, video and web pages [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2002 ( 12 ) :256 - 268.
  • 4Shanjun ZHANG, K. YOSHINO. A Braille Recognition System by the Mobile Phone with Embedded Camera[ J ]. ICICIC 2007:1321 - 1324.
  • 5H. R. Shahbazkia, T. T. Silva and R. M. Guerreiro. Automatic Braille Code Translation System[ M]. M. Lazo and A. Sanfeliu ( Eds. ) : CIARP 2005, LNCS 3773, 2005:233 - 241.
  • 6Jiang Minghu,Zhu Xiaoyan.Segmentation of Mandarin Braille Word and Braille Translation Based on Multiknowledge[J].IEEE,Proceedings of ICSP 2000,2000:2070- 2074.
  • 7Hamid Reza Shahbazkia,et al.Automatic Braille Code Translation System[J].CIARP 2005,LNCS 3773,2005:233-241.
  • 8Muhanmaad Abuzar Fahiem.A Deterministic Turing Machine for Context Sensitive Translation of Braille Codes to Urdu Text[J].IWCIA 2008,LNCS 4958,2008:342-351.
  • 9Amany Al-Saleh et al.Dot Detection of Optical Braille Images for Braille Cells Recognition[J].ICCHP 2008,LNCS 5105,2008:821-826.
  • 10张津,万振凯.基于数学形态学的图像二值化算法[J].仪器仪表用户,2008,15(2):79-80. 被引量:4

共引文献6

同被引文献77

引证文献8

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部