期刊文献+

哈夫曼编码的协同粒子群优化算法 被引量:1

Cooperative Particle Swarm Optimization Algorithm Based on Huffman Coding
下载PDF
导出
摘要 针对粒子群优化(PSO)算法在优化问题过程中易陷入局部最优的问题,提出一种基于哈夫曼编码的协同粒子群优化(HC-PSO)算法。采用哈夫曼编码将种群划分成2个子种群并对2个子种群进行独立优化,同时,2子种群之间协同完成搜索种群的全局最优解。采用6个标准测试函数来测试算法性能。实验结果表明,该算法可以有效地避免种群陷入局部最优,具有较好的优化性能和稳定性,收敛精度得到了显著的提高。 Aiming at particle swarm optimization ( PSO) algorithm easy to fall into local optimal problems in optimizing a popula-tion, a new particle swarm optimization on Huffman Coding ( HC-PSO) algorithm was put forward. Using Huffman Coding, one population will be divided into two sub populations, and each subpopulation will be optimized independently. At the same time, the two subpopulations cooperatively complete searching the global optimum solution. Through six standard test functions, the ex-perimental results show that the algorithm can effectively avoid the population falling into local optimum, is of better optimization performance and stability, and convergence accuracy is significantly improved.
作者 王娟娟
出处 《计算机与现代化》 2015年第6期82-85,共4页 Computer and Modernization
关键词 粒子群优化 局部最优 哈夫曼编码 哈夫曼算法 哈夫曼树 particle swarm optimization local optimal Huffman coding Huffman algorithm Huffman tree
  • 相关文献

参考文献11

  • 1Kennedy J, Eberhartr C. Particle swarm optimization[C]// Proceeding of IEEE International Conference on Neural Networks. Perth: IEEE Piscataway, 1995:1942-1948.
  • 2Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization[J]. Natural Computing, 2002,1(2-3):235-306.
  • 3Poli R, Kennedy J, Blackwell T. Particle swarm optimization an overview[J]. Swarm Intelligence, 2007,1:33-57.
  • 4Shi Y, Eberhart R. A modified particle swarm optimizer[C]// Proceedings of International Conference on Evolutionary Computation. 1998:69-73.
  • 5胡广浩,毛志忠,何大阔.基于两阶段领导的多目标粒子群优化算法[J].控制与决策,2010,25(3):404-410. 被引量:18
  • 6Potter M A, De Jong K A. A cooperative coevolutionary approach to function optimization[C]// Proceedings of the 3rd International Conference on Parallel Problem Solving from Nature. 1994,886:249-257.
  • 7Bergh F V D, Engelbrecht A. A cooperative approach to particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004,8(3):225-239.
  • 8Shi Y, Krohling R A. Coevolutionary particle swarm optimization to solve minmax problems[C]// Proceedings of the 2002 Congress on Evolutionary Computation. 2002,2:1682-1687.
  • 9陶新民,徐晶,杨立标,刘玉.改进的多种群协同进化微粒群优化算法[J].控制与决策,2009,24(9):1406-1411. 被引量:17
  • 10刘衍民,赵庆祯,隋常玲,邵增珍.一种基于动态邻居和变异因子的粒子群算法[J].控制与决策,2010,25(7):968-974. 被引量:32

二级参考文献29

共引文献64

同被引文献8

  • 1ZHAO Zi-xiang,ZHANG Guo-shan,BING Zhi-gang. Job- shopscheduling optimization design based on an improved GA[C]//2012 10th World Congress on Intelligent Control and Automation (WCICA). Beijing: IEEE,2012:654,659.
  • 2Eberhart R,Kennedy J. A new optimizer using particle swarm theory [C]//Proceeding of the Sixth International Symposium on Micro Machine andHuman Science. Nagoya: IEEE, 1995: 39-43.
  • 3Niu Q ,Jiao B ,Gu X S. Particle swarm optimization combined with genetic operators for job-shop scheduling problem with fuzzy processingtime[J]. Applied Mathematics and Computa- tion,2008,205 (1):148-158.
  • 4CHIANG Tsung-Che,FU Li-Chen. Muhiobjective Job Shop Scheduling using Genetic Algorithm with Cyclic Fitness As- signment [C]//IEEE Congress on Evolutionary Computation. Vancouver BC: IEEE,2006:326-3273.
  • 5SureshV,ChandhuriD. Dynamic Scheduling-A survey of research[J].Int Jof Prod Peon, 1993,32 ( 1 ) :53-63.
  • 6YAN Ping,JIAO Ming-hai. Animproved PSO search method for the job shop scheduling problem[C]//Control and Decision Conference. Mianyang: IEEE ,2011:23-25.
  • 7康鲲鹏.快速混合粒子群优化算法应用研究[J].电子设计工程,2014,22(10):10-13. 被引量:3
  • 8孙会明,陈薇.基于粒子群优化的光伏MPPT算法[J].电子科技,2014,27(6):187-189. 被引量:4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部