期刊文献+

下坡步态失稳后的自适应平衡分析——坡度i=1∶10 被引量:1

Analysis of adaptive equilibrium after gait instability in downhill:ration of slope:1:10
下载PDF
导出
摘要 以人下坡行走过程中偶发的滑跌现象为研究对象,采用表面肌电分析法,探究人下坡失稳后的自主平衡恢复反应机理。选取10名健康男性在坡度为1︰10的坡道上进行湿滑介质油和干燥环境下的下坡行走试验,采用Vicon运动捕捉系统和表面肌电系统同步采集步态参数和下肢8块主要肌肉的肌电信号,得出步速和步态时间的显著性p值分别为0.000、0.025(<0.05),故受到滑移扰动后,步速显著增加,步态时间显著减小;左右两侧肌肉的收缩特性在第一双支撑相和单支撑相无明显变化,在第二双支撑相和摆动相显著增加。依此总结出在坡度为1∶10的坡道环境下,一个步态周期各个时相内双足机器人下肢左右侧施加控制力的位置、施力大小及作用时间。该试验结果可为康复工程提供理论基础,并指导双足机器人的平衡控制系统设计。 With respect to an accidental slip in downhill walking,this study aimed to explore the self-balancing mechanism of people after losing gait stability.Ten adult males participated in a walking test across a slope of 1in 10,coated with either slippery(oil)or dry medium and were analyzed surface electromyography.The vicon motion capture systemand surface electromyography were used to collect synchronous data on gait parameters of lower limb and electromyographic signal of eight muscles.After analyzing the surface electromyography and gait parameters,significant p-values of pace and gait were determined to be 0.000and0.025,respectively.Results showed that gait time decreases significantly as pace increases significantly under the disturbance.Furthermore,there was no obvious change to muscular contraction on both sides at the first double-support phase and the singlesupport phase,but it increased dramatically at the second double-support phase and the swing phase.More importantly,in examining agait as a cycle,the force points,magnitude,and duration upon the lower limbs of a bipedal robot on a slope of 1in 10 were summarized in each phase.The findings could provide a theoretical basis for rehabilitation engineering,and guide the balance control system design of bipedal robots.
作者 张峻霞 龚梦
出处 《中国科技论文》 CAS 北大核心 2015年第10期1144-1148,共5页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20131208110005)
关键词 步态失稳 自适应平衡 肌电信号 下坡 gait instability adaptive equilibrium electromyography downhill
  • 相关文献

参考文献16

  • 1Beschorner K,Cham R.Impact of joint torques on heel acceleration at heel contact,a contributor to slips and falls[J].Ergonomics,2008,51(12):1799-1813.
  • 2Debbi E M,Wolf A,Haim A.Detecting and quantifying global instability during a dynamictask using kinetic and kinematic gait parameters[J].Journal of Biomechanics,2012,45(8):1366-1371.
  • 3Hak L,Houdijk H,Steenbrink F,et al.Speeding up or slowing down?:gait adaptations to preserve gait stability in response to balance perturbations[J].Gait&Posture,2012,36(2):260-264.
  • 4Hak L,Houdijk H,Steenbrink F,et al.Stepping strategies for regulating gait adaptability and stability[J].Journal of Biomechanics,2013,46(5):905-911.
  • 5Chambers A J,Cham R.Slip-related muscle activation patterns in stance leg during walking[J].Gait&Posture,2007,25(4):565-572.
  • 6Qu Xingda,Hu Xinyao,Lew Fuiling.Differences in lower extremity muscular responses between successful and failed balance recovery after slips[J].International Journal of Industrial Ergonomics,2012,42(5):499-504.
  • 7苏海龙,张大卫,李佳.步态自主平衡行为的下肢神经肌肉力学分析[J].天津大学学报(自然科学与工程技术版),2013,46(8):743-748. 被引量:4
  • 8Kawamura K,Tokuhiro A,Takechi H.Gait analysis ofslope walking:a study of step length,stride width,time factors anddeviation in the centre of pressure[J].Acta Medica Okayama,1991,45(3):179-184.
  • 9Leroux A,Fung J,Barbeau H.Postural adaptation to walking on inclined surfaces:I.Normal strategies[J].Gait&Posture,2002,15(1):64-74.
  • 10Yamasaki M,Sasaki T,Tsukzuki S,et al.Stereotyped pattern of lower limb movement during level and grade walking on treadmill[J].The Annals of Physiology and Anthropology,1984,3(4):291-296.

二级参考文献12

  • 1Witaya M, Jill L M. Regulation of angular impulse dur- ing fall recovery [J]. Journal of Rehabilitation Research and Development, 2008, 45(8): 1237-1248.
  • 2Neptune R R, McGowan C P. Muscle contributions to whole-body sagittal plane angular momentum during walking[J]. Journal of Biomechanics, 2011, 44 (1) : 6-12.
  • 3Nagano A, Fukashiro S, Himeno R. Computer simula- tion of human lower limb motions using a three- dimensional musculoskeletal model [J]. Computational Biomechanics, 2004: 161-167.
  • 4Hartmut G, Hugh H. A muscle-reflex model that en- codes principles of legged mechanics produces human walking dynamics and muscle activities [J]. IEEE Trans- actions on Neural Systems and Rehabilitation Engineer- ing, 2010, 18(3): 263-273.
  • 5Elizabeth T H, Stephen N R. Biomechanical influences on balance recovery by stepping[J]. Journal of Biome- chanics, 1999, 32(10): 1099-1106.
  • 6Bhatt T, Wening J D, Pai Y C. Adaptive control of gait stability in reducing slip-related backward loss of bal- ance[J]. Experimental Brain Research, 2006, 170 (1) : 61-73.
  • 7Maki B E, Mcllroy W E. Control of rapid limb move- ments for balance recovery: Age-related changes and implications for fall prevention [J]. Age and Ageing, 2006, 35 (2) : 12-18.
  • 8Winter D A. Human balance and posture control during standing and walking[J]. Gait and Posture, 1995, 3(4) : 193-214.
  • 9Bhatt T, Wang E, Pal Y C. Retention of adaptive con- trol over varying interval: Prevention of slip induced backward balance loss during gait[J]. Journal of Neuro- physiology, 2006, 95(5): 2913-2922.
  • 10Reed F, Louis R O, Marjorie H W, et al. Reactive balance adjustments to unexpected perturbations during human walking[J]. Gait and Posture, 2002, 16(3) : 238-248.

共引文献3

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部