期刊文献+

动态背景下运动车辆的检测与跟踪研究 被引量:2

Research on Detecting and Tracking of Moving Vehicle under Dynamic Background
下载PDF
导出
摘要 为实现对车载设备视频图像中车辆的识别和跟踪,针对图像中的运动目标和动态背景,提出了一种基于特征学习的目标检测和超像素跟踪算法。该算法首先对训练图像进行HOG特征提取,并利用AdaBoost算法得到强分类器。利用强分类器对采集的图像进行车辆检测,从而确定搜索区域。结合对搜索区域的超像素分割结果,采用均值漂移聚类算法实现车辆识别与跟踪。实验结果表明,该算法可以很好地实现视频序列中的车辆识别,提高了目标跟踪的实时性。 In order to detect and track moving vehicles in video image of in-vehicle camera, a vehicle detecting and tracking algorithm based on feature learning and super-pixel tracking was proposed in this paper according to moving object and dynamic background in video image. Firstly, HOG feature was extracted from the trained image and AdaBoost algorithm was used to compute reinforced classifier. Then, the reinforced classifier was adopted to detect the captured image to detemaine the search area. Finally, combined with results of super-pixel segmentation, mean-shift clustering algorithm was used to identify and track vehicle. Experimental results show that the proposed algorithm can successfully detect moving vehicle in video image and significantly improve the real-time of vehicle tracking.
作者 谭学治 韩艺
出处 《移动通信》 2015年第11期80-85,共6页 Mobile Communications
关键词 HOG特征 ADABOOST算法 超像素 均值漂移聚类 车辆识别 车辆跟踪 HOG feature AdaBoost algorithm super-pixel mean-shift clustering vehicle identification vehicle tracking
  • 相关文献

参考文献10

  • 1Board N C T. Intelligent Transportation Systems[J]. Transportation Research Record, 2013,5(4): 1-6. Xia.
  • 2Yong-quan, Jo Kang-hyun, Gan Yong, et al. Review of Intelligent Transportation System based on Computer Vision[J]. Journal of Zhengzhou University of Light Industry (Natural Science Edition), 2014,29(6): 52-60.
  • 3Kumar P, Ranganath S, Huang W, et al. Framework for Real-Time Behavior Interpretation from Traffic Video[J].Intelligent Transportation Systems IEEE Transactions on, 2005,6( 1 ): 43-53.
  • 4Gao P, Sun X, Wang W. Moving Object Detection based on Kirsch Operator Combined with Optical Flow[C]. Image Analysis and Signal Processing (IASP), 2010 International Conference on, IEEE, 2010: 620-624.
  • 5Seki M, Fujiwara H, Sumi K. A Robust Background Subtraction Method for Changing Background[C]. Applications of Computer Vision, 2000, Fifth IEEE Workshop on, IEEE, 2000: 207-213.
  • 6钱志明,杨家宽,段连鑫.基于视频的车辆检测与跟踪研究进展[J].中南大学学报(自然科学版),2013,44(S2):222-227. 被引量:13
  • 7Yang C, Duraiswami R, Davis L S. Efficient Kernel Machines Using the Improved Fast Gauss Transform[J]. Advances in Neural Information Processing Systems, 2004:1561-1568.
  • 8Freund Y, Schapire R E. A Short Introduction to Boosting[C]. Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, 1999,14(14): 1401-1406.
  • 9Achanta R, Shaji A, Smith K, et al. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods[J].IEEE Transactions on Pattern Analysisand Machine Intelligence, 2012,34(11 ): 2274-2282.
  • 10] Le6n K, Mery D, Pedreschi F, et al. Color Measurement in Lab Units from RGB Digital Images[J]. Food Research International, 2006(39): 1084-1091.

二级参考文献33

  • 1J. KATO,T. WATANABE,S. JOGA,Y. LIU,H. HASE."HMM/MRF-basedstochastic framework for robust vehicle tracking,". IEEE Trans. Intell.Transp. Syst . 2004
  • 2Hu Weiming,Xiao Xuejuan,Xie Dan, et al.Traffic Accident Prediction Using 3-D Model-Based Vehicle Tracking. IEEE Transactions on Vehicular Technology . 2004
  • 3T. Kato,Y. Ninomiya,I. Masaki.Preceding vehicle recognition based on learning from sample images. IEEE Transaction on Intelligent Transportation Systems . 2002
  • 4H Grabner,H Bischof.On-line boosting and vision. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition . 2006
  • 5Moscheni F,Bhattacharjee S,Kunt M.Spatialtemporal segmentation based on region merging. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1998
  • 6Rowley HA,Baluja S,Kanade T.Neural Network-Based Face Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1998
  • 7Yu Zhong,Jain AK,Dubuisson-Jolly,et al.Object tracking using deformable templates. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2000
  • 8Viola P,Jones M J,Snow D.Detecting pedestrians using patterns of motion and appearance. Proceedings of the IEEE International Conference on Computer Vision . 2003
  • 9Wixson L.Detecting salient motion by accumulating directionally consistent flow. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2000
  • 10LI Xin,YAO Xiaocao,Murphey Yi L,Robert Karlsen,Grant Gerhart.A Real-Time Vehicle Detectionand Tracking System in Outdoor Traffic Scenes. Proceedings of the17th InternationalConference on Pattern Recognition (ICPR’’04) . 2004

共引文献12

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部