期刊文献+

强度调制的啁啾光纤光栅加速度传感器 被引量:4

Intensity-modulated acceleration sensor based on chirped-fiber grating
下载PDF
导出
摘要 设计了一种基于啁啾光纤布拉格光栅的新型加速度传感器,该传感器主要由矩形悬臂梁构成的传感机构和光纤光谱仪及光电探测器组成。导出了啁啾光纤布拉格光栅的反射谱带宽与加速度的关系;通过光谱仪检测啁啾光纤布拉格光栅反射谱的带宽或检测光电探测器输出的电压,即可获得加速度的大小。实验结果表明,该啁啾光纤布拉格光栅反射谱带宽及光电探测器输出的电压对温度变化不敏感,且在0~700m/s2测量范围内,反射谱带宽与加速度间具有良好的线性关系。由于反射谱带宽展宽造成了光纤布拉格光栅反射率的降低,因此光电探测器输出电压的线性响应范围只能达到0~35 m/s2,带宽和电压灵敏度分别达到0.005 6nm·m-1·s-2和0.785 6m V·m-1·s-2。 A novel acceleration sensor based on a chirped-fiber Bragg grating(CFBG) has been proposed. It is mainly con- stituted by a rectangular cantilever beam sensing mechanism, a fiber optic spectrometer and a photodetector(PD). The expression of relationship between the acceleration and the bandwidth is derived. The acceleration can be obtained by measuring the band- width and voltage of the PD. The experimental results show that the reflection spectrum bandwidth and voltage of the PD are in- sensitive to temperature changes within the measuring range, there is a good linear relationship between the bandwidth of the re- flection spectrum and the measured acceleration within a large range up to 0~700 m/s2 , but the reflected optical power succeeds only below 350 m/s2 due to the decay in reflectivity when the bandwidth of the FBG is broadened significantly. The achieved sen sitivities are 0. 005 6 nm · m-1 · s 2 and 0. 785 6 mV · m-1 · s-2 for bandwidth and optical power measurements, respectively.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2015年第6期75-78,共4页 High Power Laser and Particle Beams
基金 山东省自然科学基金项目(ZR2014FL027)
关键词 光纤传感器 加速度传感器 加速度测量 啁啾光纤布拉格光栅 fiber optic sensor acceleration sensor acceleration measurement chirped-fiber Bragg grating
  • 相关文献

参考文献8

二级参考文献61

共引文献19

同被引文献40

  • 1乔学光,丁锋,贾振安,葛朋,邬华春,刘志愿.一种基于ASE光源的边缘滤波解调技术的研究[J].光电子.激光,2009,20(9):1170-1173. 被引量:13
  • 2Da Costa Antunes, Paulo Fernando, Pinheiro Rodrigues, et al. Elevated water reservoir monitoring using optical fiber accelerometer[J]. Instrumentation Science and Technolo- gy,2013,41(2) :125-134.
  • 3Byoungho Lee. Review of the present status of optical fi- ber sensors [J]. Optical Fiber Technology, 2003,9 ( 2 ) : 57-79.
  • 4WENG Yin-yan, QIAO Xue-guang, FENG Zhong-yao, et al. Compact FBG diaphragm accelerometer based on L- shaped rigid cantilever beam[J]. Chinese Optic Letters, 2011,9(10) : 100604.
  • 5Mousumi Majumder, Tarun Kumar Gangopadhyay,Cha- kraborty Ashim Kumar, et al. Fiber Bragg gratings in structural health monitoring Present status and applica- tions[J]. Sensors and Actuators A.. Physical, 2008, 147 (1) :150-164.
  • 6Basumallick N, Chatterjee I, Biswas P,et al Fiber Bragg grating accelerometer with enhanced sensitivity[J]. Sen- sors and Actuators A, 2012,173 (1) : 108-115.
  • 7WANG Jun, PENG Gang-ding, HU Zheng-liang, et al De- sign and analysis of a high sensitivity FBG accelerometer based on local strain amplification[J] IEEE Sensor Jour- nal,2015,15(10) :5442-5449.
  • 8Catalano A,Bruno F A, Pisco M,et al An intrusion detec- tion system for the protection of railway assets using fiber Bragg grating sensors[J] Sensors, 2014,14 (10) : 18268- 18285.
  • 9ZHANG Jing-hua,QIAO Xue-guang,HU Man-li,et al Flex- tensional fiber Bragg gating-based accelerometer for low frequency vibration measurement[J]. Chinese Optic Let- ters, 2011,9(9) : 29-32.
  • 107HAO Yong,LIAO Yan-biao. Discrimination methods and demodulation techniques for fiber Bragg grating sensors [J]. Optics and Lasers in Engineering, 2004,41 ( 1 ) : 1- 18.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部