期刊文献+

欠叠异质栅纳米碳管场效应管的量子输运特性(英文) 被引量:1

Quantum Transport in Hetero-material-gate CNTFETs with Gate Underlap: A Numerical Study
下载PDF
导出
摘要 采用量子力学模型,对欠叠栅对传统单质栅碳纳米管场效应管(简称C-CNTFET)和异质栅碳纳米管场效应管(简称HMG-CNTFET)电学特性的影响进行理论研究,该模型基于二维非平衡格林函数(NEGF)泊松方程自洽求解.仿真结果表明,C-CNTFET的截止频率可高达THz量级,另外,通过比较C-和HMG-CNTFET可以看出,CCNTFET增加欠叠栅后能够提高器件的开关速度,但不利于提高器件的开关电流比.在HMG-CNTFET中,欠叠栅的采用不仅能够同时改善亚阈值特性和开关电流比,还能降低输出电导. Effects of gate underlap on electronic properties of conventional single-material-gate CNTFET ( C-CNTFET) and hetero-material-gate CNTFET ( HMG-CNTFET ) are investigated theoretically in a quantum kinetic model. The model is based on two-dimensional non-equilibrium Green’ s functions ( NEGF) solved self-consistently with Poisson’ s equations. It shows that intrinsic cutoff frequency of C-CNTFETs reaches a few THz. In addition, a comparison study was performed about C-and HMG-CNTFETs. Calculated results show that, C-CNTFETs with longer underlap have better switching speed but less on/off current ratios. For HMG-CNTFET, gate underlap improves sub-threshold performance and switching delay times, and decreases output conductance significantly.
出处 《计算物理》 CSCD 北大核心 2015年第2期229-239,共11页 Chinese Journal of Computational Physics
基金 Supported by Natural Science Foundation of Higher Education in Jiangsu Province(10KJD510006)
关键词 碳纳米管场效应管 非平衡格林函数 欠叠栅 短沟道效应 异质栅 CNTFET NEGF underlap SCE hetero-material-gate
  • 相关文献

参考文献17

  • 1Fiori G, Iannaccone G, Klimeck G. nanotube field-effect transistors with A three-dimensional simulation study of the performance doped reservoirs and realistic geometry [ J]. IEEE Trans Dev, 2006, 53(8): 1782- 1788.
  • 2Orouji A A, Arefinia Z. Detailed simulation study of a dual material gate carbon nanotube field-effect transistor [J]. Phys E: Low-dimensional Syst Nanostructures, 2009, 41(10): 552- 557.
  • 3Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a single carbon nanotube [J]. Nature, 1998, 393(7): 49 -52.
  • 4Hazeghi A, Krishnamohan T, Wong H. Schottky-barrier carbon nanotube field-effect transistor modeling [J]. IEEE Trans Electron Dev, 2007, 54(3) : 439 -445.
  • 5Guo J, Lundstrom M, Datta S. Performance projections for ballistic carbon nanotube field-effect transistors [J]. ApplPhys Lett, 2002, 80(17): 3192 -3194.
  • 6Arefinia Z, Orouji A A. Quantum simulation study of a new carbon nanotube field-effect transistor with electrically induced source/drain extension [ J]. IEEE Transactions on Device and Materials Reliability, 2009, 9 (2) : 237 - 243.
  • 7Xia T S, Register L F, Banerjee S K. Simulation study of the carbon nanotube field effect transistors beyond the complex band structure effect [ J]. Solid-Statonice Electrs, 2005, 49 (3) : 860 - 864.
  • 8Chen J, Klinke C, Afzali A, et al. Self-aligned carbon nanotube transistors with novel chemical doping [ C ]. Proc of Int' 1 Electron Device Meeting on Technical Digest, 2004 : 695 - 698.
  • 9Chen J, Klinke C, Afzali A, et al. Self-aligned carbon nanotube transistors with charge transfer doping [J]. Applied Physics Letter, 2005, 86(12):3108.
  • 10Lin Y, Appenzeller J, Knoch J, et al. High-performance carbon nanotube field-effent transistor with tunable polarities [ J]. IEEE Trans on Nanotechnology, 2005, 4(5) : 481 -489.

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部