期刊文献+

自适应容积卡尔曼滤波在空间机动目标跟踪中的应用 被引量:3

Application of Adaptive Cubature Kalman Filter in Spatial Maneuvering Target Tracking
下载PDF
导出
摘要 针对目标在线机动时,平方根容积卡尔曼滤波不具有良好的鲁棒性,不能够快速发生响应的问题,提出一种自适应容积卡尔曼滤波(CKF)算法,算法利用CKF的平方根形式进行迭代,即SCKF。将强跟踪滤波算法引入平方根容积卡尔曼滤波,引入渐消因子对滤波发散情况进行检测和抑制,有效克服了空间目标发生机动时标准滤波器无法快速准确对其进行跟踪的问题,提高了空间目标定位跟踪的数值稳定性。仿真表明:与标准SCKF相比,自适应SCKF有效地提高了机动目标被动定位跟踪的鲁棒性,具有较高的滤波精度和稳定性,同时具有良好的实时性,能更好地完成对空间机动目标的跟踪任务。 Since the square root Cubature Kalman Filter is not robust and unable to give a quick response during target online maneuvering, an algorithm of adaptive Cubature Kalman Filter (CKF) is proposed, which uses the square root form of CKF for iteration, that is, SCKF. This algorithm introduces a strong tracking filtering algorithm into SCKF, and introduces a fading factor for detecting and restraining the filtering divergence, which effectively overcomes the problem that a standard filter cannot quickly and accurately track the spatial target during its maneuvering, and improves the numerical stability of spatial target location and tracking. Simulation result shows that: Compared with standard SCKF, the adaptive SCKF can effectively improve the robustness of maneuvering target passive locating and tracking, has higher filtering accuracy and stability, and good real-time performance, which can better accomplish the tracking task of spatial maneuvering target.
出处 《电光与控制》 北大核心 2015年第6期56-59,共4页 Electronics Optics & Control
关键词 机动目标 目标跟踪 自适应 容积卡尔曼滤波 强跟踪滤波 maneuvering target target tracking adaptive spatial maneuvering target cubature Kalman filter strong tracking filtering
  • 相关文献

参考文献7

二级参考文献31

  • 1胡洪涛,敬忠良,李安平,胡士强.非高斯条件下基于粒子滤波的目标跟踪[J].上海交通大学学报,2004,38(12):1996-1999. 被引量:54
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3高玮 郑颖人.非线性时序建模预测方法探讨[J].清华大学学报,2000,40(2):6-10.
  • 4Bar-Shalom Y, Rong L X, Kirubarajan T. Estimation with Application to Tracking and Navigation: Theory Algorithms and Software. New York: Wiley, 2001. 69-83.
  • 5Sorenson H W. Kalman Filtering: Theory and Application. New York: IEEE, 1985.
  • 6Daum F. Nonlinear filters: beyond the Kalman filter. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 57-69.
  • 7Athans M, Wisher R P, Bertolini A. Suboptimal state esti- mation for continuous-time nonlinear systems from discrete noise measurements. IEEE Transactions on Automatic Con- trol, 1968, 13(5): 504-514.
  • 8Julier S J, Uhlmann J K, Durrant-Whyte H F. A new method for nonlinear transformation of means and covariances in fil- ters and estimators. IEEE Transactions on Automatic Con- trol, 2000, 45(3): 477-482.
  • 9Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3): 401-422.
  • 10Saulson B G, Chang K C. Nonlinear estimation compari- son for ballistic missile tracking. Optical Engineering, 2004, 43(6): 1424-1438.

共引文献392

同被引文献22

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部