摘要
考虑Bernoulli机制下具有两类穷尽多重休假的M/M/1排队系统。当正规服务结束且系统变空时,服务台总是进行经典多重休假或多重工作休假。在经典休假期内,由于得不到服务,顾客会选择几何放弃的方式离开系统。对于该系统,首先得到了平稳概率分布和一些性能测度;其次讨论了系统队长的随机分解性;第三分析了在正规忙期开始时刻系统队长分布和忙循环。
This paper treats an M/ M/ 1 queue with two types of exhaustive multiple vacations under Bernoulli schedule. The server always takes classical multiple vacations or multiple working vacations when the system becomes empty after a normal service completion. Moreover, during classical vacation period, customers may choose to leave the system according to geometric abandon-ments because of no service available. For this model, we firstly obtain the stationary probability distribution and some performance measures of interest. Secondly, we discuss the stochastic decomposition of the system size. Thirdly, we analyze the system size dis-tribution at the initial epoch of a regular busy period and busy cycle.
出处
《阜阳师范学院学报(自然科学版)》
2015年第2期12-16,共5页
Journal of Fuyang Normal University(Natural Science)
基金
国家自然科学基金(11171179)
安徽省高等学校省级自然科学研究项目(KJ2014ZD21
2014KJ017)
阜阳师范学院质量工程项目(2013ZYSD05
2014JXTD01)资助