基于最小残差思想的一类代数Riccati方程的牛顿迭代求解
摘要
本文在牛顿迭代法框架下,借用最小残差法思想,结合预条件共轭最小二乘法,提出了一种新的算法对一类代数Riccati方程的数值解进行了研究,并给出了具体的数值算例。算例结果验证了该方法具有良好的收敛性。
出处
《湖南科技学院学报》
2015年第5期5-10,40,共7页
Journal of Hunan University of Science and Engineering
基金
湖南省教育厅资助科研项目(12C0688)
湖南省自然科学基金资助项目(12JJ3077)
参考文献13
-
1Laub A.A schur method for solving algebraic Riccati equations[J].IEEE Trans. Automat. Control.,1979,24:913-921.
-
2Byers R.Solving the algebraic Riccati equation with the matrix sign function[J].Linear Algebra Appl., 1987,85:267-279.
-
3H.T.Banks,K.Ito.A numerical algorithm for optimal feedback gains in high dimensional linear quadratic regulator problems[J]. SIAM J.Contro|.Optim., 1991,29(3):499-515.
-
4J.A.Burns,K.P.I-Iulsing.Numerical methods for approximating functional gains in LQR boundary control problems[J]. Mathematical and Computer Modelling,2001,33 (1): 89 - 100.
-
5D.Kleinman.On an Iterative Technique for Riccati Equation Computations[J].IEEE Transactions on Automat.Control., 1968,13: 114-115.
-
6I.G;Rosen and C. Wang.A multilevel technique for the approximate solution of operator Lyapunov and algebraic Riccati equations [J].SIAM J.Numer.Anal., 1995,32(2):514-541.
-
7E Benner and J. Saak. A Galerkin-Newton-ADI method for solving large-scale algebraic Riccati equations [J]. DFG Priority ?rogramme 1253."Optimization with Partial Differential Equations", 2010. Preprint SPP1253-090.
-
8Gajic Z, Qureshi M. Lyapunov Matrix equation in system stability and control [M]. Academic Press: San Diego, 1995.
-
9P. Bermer, J. R. Li, T. Penzl. Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic 3ptimal control problems [J]. Numer. Linear Algebra Appl., 2008, 15(9):755-777.
-
10Lin Y, V. Simoncini. Minimal residual methods for large scale Lyapunov equations [J]. Appl. Numer. Math., 2013, 72:52-71.
-
1于维生.最小残差绝对和回归模型参数的递推估计方法[J].中国管理科学,1995,3(2):49-55. 被引量:1
-
2罗威,高正平,赵伯琳.FMM用于快速计算电大腔体的RCS[J].电波科学学报,2006,21(6):848-852. 被引量:2
-
3Hongfei,Hongxing Rui.A PRIORI ERROR ESTIMATES FOR LEAST-SQUARES MIXED FINITE ELEMENT APPROXIMATION OF ELLIPTIC OPTIMAL CONTROL PROBLEMS[J].Journal of Computational Mathematics,2015,33(2):113-127.
-
4刘淑静,朱汉清.有限差分法结合预条件共轭梯度分析三维电磁散射问题[J].淮阴师范学院学报(自然科学版),2003,2(4):285-288.
-
5武亚静,赵扬扬.基于主元分析和压缩感知的人脸识别算法[J].西安工程大学学报,2013,27(4):524-529. 被引量:5
-
6刘喜武,刘洪,李幼铭.反射系数与子波同时迭代反演的预条件共轭梯度法[J].物探化探计算技术,2006,28(3):211-215. 被引量:6
-
7方荣,叶垭兴.有限元支配方程的解法探讨[J].浙江水利水电专科学校学报,2002,14(3):4-6. 被引量:1
-
8杨晟院,肖映雄,舒适,钟柳强.高次有限元方程的一种并行预条件子[J].系统仿真学报,2008,20(22):6078-6082.
-
9张健,邓有奇,李彬,张耀冰.一种适用于三维混合网格的GMRES加速收敛新方法[J].航空学报,2016,37(11):3226-3235. 被引量:6
-
10张明亮,WU W.M..基于四叉树网格近海海域波浪、潮流相互作用的数学模型[J].中国科学:物理学、力学、天文学,2012,42(3):294-309. 被引量:2