期刊文献+

Production of high-purity hydrogen by sorption-enhanced steam reforming process of methanol 被引量:2

Production of high-purity hydrogen by sorption-enhanced steam reforming process of methanol
下载PDF
导出
摘要 The sorption-enhanced steam reforming process of methanol(SESRP-Me OH) to produce high-purity H2 was thermodynamically and experimentally studied.Thermodynamic calculations showed that at a CO2 adsorption ratio of 95%,product gas contains 98.36% H2,32.8 ppm CO under temperature of 130°C and steam-to-methanol(S/M) molar ratio of 2.However,without adsorption-enhanced,the product gas contains nearly 74.99% H2 with 24.96% CO2 and 525 ppm CO.To verify the thermodynamic calculation results,experiments were performed in a fixed-bed reactor loaded with commercial Cu O/Zn O/Al2O3 methanol reforming catalyst and 22% K2CO3-promoted hydrotalcite as CO2 adsorbent.Experimental results showed that 99.61% H2 could be obtained by SESRP-Me OH at reaction temperature of 230°C and S/M of 2.Under the same CH3 OH conversion,the reaction temperature decreased by almost 50°C and H2 concentration increased of more than 20%using SESRP-Me OH compared with solely steam reforming of methanol.The characterization of the adsorbent and catalyst showed that the adsorbent showed good stability while the catalyst was seriously sintered under the high regeneration temperature of the adsorbent. The sorption-enhanced steam reforming process of methanol(SESRP-Me OH) to produce high-purity H2 was thermodynamically and experimentally studied.Thermodynamic calculations showed that at a CO2 adsorption ratio of 95%,product gas contains 98.36% H2,32.8 ppm CO under temperature of 130°C and steam-to-methanol(S/M) molar ratio of 2.However,without adsorption-enhanced,the product gas contains nearly 74.99% H2 with 24.96% CO2 and 525 ppm CO.To verify the thermodynamic calculation results,experiments were performed in a fixed-bed reactor loaded with commercial Cu O/Zn O/Al2O3 methanol reforming catalyst and 22% K2CO3-promoted hydrotalcite as CO2 adsorbent.Experimental results showed that 99.61% H2 could be obtained by SESRP-Me OH at reaction temperature of 230°C and S/M of 2.Under the same CH3 OH conversion,the reaction temperature decreased by almost 50°C and H2 concentration increased of more than 20%using SESRP-Me OH compared with solely steam reforming of methanol.The characterization of the adsorbent and catalyst showed that the adsorbent showed good stability while the catalyst was seriously sintered under the high regeneration temperature of the adsorbent.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第3期315-321,共7页 能源化学(英文版)
关键词 HYDROGEN METHANOL sorption-enhanced reforming carbon dioxide HYDROTALCITE hydrogen methanol sorption-enhanced reforming carbon dioxide hydrotalcite
  • 相关文献

同被引文献11

引证文献2

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部