期刊文献+

Synergetic influence of ex-situ camphoric carbon nano-grafting on lithium titanates for lithium ion capacitors

Synergetic influence of ex-situ camphoric carbon nano-grafting on lithium titanates for lithium ion capacitors
下载PDF
导出
摘要 The present study provides detailed experimental results on the synthesis and characterization of carbonized lithium titanate spinel(LTO) composites as electrode materials for lithium ion capacitor.The LTO particles were grafted with a porous carbon layer obtained from the pyrolysis of camphor.The graphitic nature of the carbon was confirmed through Raman spectroscopy.The relative contributions from the capacitive and diffusion controlled processes underlying these electrodes were mathematically modeled.Electron transport mechanism underlying these electrodes was determined by measuring the work functions(φ) of LTO and carbon grafted LTO using ultraviolet photoelectron spectroscopy.These carbon grafted LTO composites exhibited an energy density of 330 m Wh L-1and a peak power density of 2.8 k W L-1,when employed as electrodes in coin cells with excellent cycling stability at the end of 4000 cycles. The present study provides detailed experimental results on the synthesis and characterization of carbonized lithium titanate spinel(LTO) composites as electrode materials for lithium ion capacitor.The LTO particles were grafted with a porous carbon layer obtained from the pyrolysis of camphor.The graphitic nature of the carbon was confirmed through Raman spectroscopy.The relative contributions from the capacitive and diffusion controlled processes underlying these electrodes were mathematically modeled.Electron transport mechanism underlying these electrodes was determined by measuring the work functions(φ) of LTO and carbon grafted LTO using ultraviolet photoelectron spectroscopy.These carbon grafted LTO composites exhibited an energy density of 330 m Wh L-1and a peak power density of 2.8 k W L-1,when employed as electrodes in coin cells with excellent cycling stability at the end of 4000 cycles.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第3期337-345,共9页 能源化学(英文版)
基金 Indian Space Research Organization (ISRO),Government of India is gratefully acknowledged for their financial support
关键词 functional composites capacitors electrical properties lithium ion energy storage functional composites capacitors electrical properties lithium ion energy storage
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部