期刊文献+

Non-structural carbohydrate levels of three co-occurring understory plants and their responses to forest thinning by gap creation in a dense pine plantation

Non-structural carbohydrate levels of three co-occurring understory plants and their responses to forest thinning by gap creation in a dense pine plantation
下载PDF
导出
摘要 We investigated non-structural carbohydrates(NSC) levels and components(starch,glucose,fructose and sucrose) in the leaves of three typical co-occurring forestfloor plants,moss Eurhynchium savatieri(ES),fern Parathelypteris nipponica(PN) and forb Aruncus sylvester(AS) in a 30-year-old Chinese pine(Pinus tabulaeformis)plantation forest on the eastern Tibetan Plateau.We also explored their responses to three gap creation treatments(control and two gap creations of 80 and 110 m2) based on NSC levels.PN had the highest leaf NSC level of the three plants,with AS second and ES lowest.Starch was the predominant component of NSC and the contents of glucose were higher than those of fructose or sucrose for all three species.The NSC level of ES in intermediate gaps was significantly higher than at control sites.PN also had higher NSC levels in both small and intermediate gaps than in control sites.But the differences between treatments were not obvious for AS.Our results suggest that ES and PN benefit from gap formation while the two species have different NSC response sensitivities to gap size,but the leaf NSC level of AS is less sensitive to the disturbance. We investigated non-structural carbohydrates(NSC) levels and components(starch,glucose,fructose and sucrose) in the leaves of three typical co-occurring forestfloor plants,moss Eurhynchium savatieri(ES),fern Parathelypteris nipponica(PN) and forb Aruncus sylvester(AS) in a 30-year-old Chinese pine(Pinus tabulaeformis)plantation forest on the eastern Tibetan Plateau.We also explored their responses to three gap creation treatments(control and two gap creations of 80 and 110 m2) based on NSC levels.PN had the highest leaf NSC level of the three plants,with AS second and ES lowest.Starch was the predominant component of NSC and the contents of glucose were higher than those of fructose or sucrose for all three species.The NSC level of ES in intermediate gaps was significantly higher than at control sites.PN also had higher NSC levels in both small and intermediate gaps than in control sites.But the differences between treatments were not obvious for AS.Our results suggest that ES and PN benefit from gap formation while the two species have different NSC response sensitivities to gap size,but the leaf NSC level of AS is less sensitive to the disturbance.
出处 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第2期391-396,共6页 林业研究(英文版)
基金 supported by the Strategic Priority Research Program of the CAS(No.XDA05070306) the National Science&Technology Pillar Program in 12th 5-year Plan of China(No.2011BAC09B0402)
关键词 Forest-floor plant Gap thinning Light radiation MOSS Non-structural carbohydrates Forest-floor plant Gap thinning Light radiation Moss Non-structural carbohydrates
  • 相关文献

参考文献2

二级参考文献19

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部