期刊文献+

LbL法制备磁性纳米复合纤维膜生物相容性的研究 被引量:2

Biocompatibility of magnetic nanofibrous composite scaffolds fabricated by Layer-by-Layer assembly
下载PDF
导出
摘要 目的将磁性纳米材料嫁接到静电纺丝纤维膜上以达到增强其生物相容性的目的。方法通过"层-层自组装"(Lb L)的方法将Fe3O4磁性纳米颗粒组装到聚乳酸-羟基乙酸共聚物(poly(lactic-co-glycolic acid),PLGA)、ε-聚己内酯(ε-caprolactone,PCL)、明胶(gelatin,Gel)共混静电纺丝纤维膜(PPG)上,使用接触角仪、电子万能试验机、扫描电镜和振动样品磁强计对其表面形貌、亲水性、拉伸性能及磁学性能进行测试。将MC3T3-E1细胞接种到复合膜上,通过CCK-8法测试其细胞增殖,并与对照组进行比较。结果扫描电镜显示Fe3O4组装到膜表面,膜仍然保持类似细胞外基质的疏松纳米纤维结构。振动样品磁强计结果显示PPG膜在修饰了Fe3O4磁性纳米颗粒后具备超顺磁性性能。接触角及吸水率测量表明PPG-F膜亲水性显著改善,CCK-8检测结果显示PPG-F膜细胞增殖活性显著高于对照组PPG膜(P<0.05)。结论本方法形成的PPG-F纳米纤维复合膜具有良好生物相容性。 Objective To improve the biocompatibility of nanofibrous scaffolds by grafting magnetic nano-particles onto them. Meth- ods Poly ( lactie-co-glycolic acid) (PLGA)/ε-caprolactone (FCL)/gelatin (Gel) nanofibrous composite membranes (PPG) were fabricated by electrospinning. And then paramagnetic Fe304 nano-particles were assembled to the scaffolds by layer-by-layer (LbL) process. Contact angle meter, electronic universal testing machine, vibrating sample magnetometer were used to characterize the surface topography,hydrophilicity,tensile strength and magnetic properties. Osteoblastic cell line MC3T3-E1 was seeded onto the scaffolds. CCK-8 was used to detect the cell proliferation. Results FESEM showed the structure of the PPG-F scafffold was similar to that of ex- tracellular matrix,and Fe304 particles were successfully grafted onto the scaffolds. Vibrating sample magnetometer results indicated that after being coated with Fe304 particles,PPG-F membrane was of super paramagnetic property. Both improved hydrophilicity and better cell proliferation were observed in PPG-F group (P 〈 0.05). Conclusions Grafting magnetic Fe304 nano-particles onto nanofibrous scaffolds can obviously improve the biocompatibility.
出处 《口腔医学》 CAS 2015年第5期321-325,共5页 Stomatology
基金 国家自然科学基金(81400486) 江苏省自然科学基金(BK20140911) 江苏省博士后基金(1402044B) 江苏高校优势学科建设工程资助项目(2014-37)
关键词 静电纺丝 磁性Fe3O4纳米颗粒 层层自组装 生物相容性 electrospinning magnetic Fe304 nano-particles LbL self-assembly biocompatibility
  • 相关文献

参考文献21

  • 1Langer R, Vacanti JP. Tissue engineering [ J ]. Science, 1993,260 (5110) :920 -926.
  • 2Yang SF, Leong KF, Du ZH,et al. The design of scaffolds for use in tissue engineering. Part 1. Traditional factors [ J]. Tissue Eng, 2001,7(6) :679 -689.
  • 3Calvo-Guirado JL, Ramirez-Fernandez MP, Delgado-Ruiz RA, et al. Influence of Biphasic beta-TCP with and without the use of col- lagen membranes on bone healing of surgically critical size defects. A radiological,histological, and histomorphometric study [ J]. Clin Oral Implants Res,2014,25 ( 11 ) :1228 - 1238.
  • 4Chen GQ,Wu Q. The application of polyhydroxyalkanoates as tis- sue engineering materials [ J ]. Biomaterials, 2005,26 ( 23 ) :6565 - 6578.
  • 5Jensen SS, Terheyden H. Bone augmentation procedures in local- ized defects in the alveolar ridge : clinical results with different bone grafts and bone-substitute materials [ J]. Int J Oral Maxillofac Im- plants,2009,24 : 218 - 236.
  • 6Liu WY,Thomopoulos S, Xia YN. Electrospun nanofibers for regen- erative medicine[ J]. Adv Healthc Mater,2012,1 ( 1 ) : 10 - 25.
  • 7Bhardwaj N, Kundu SC. Electrospinning:A fascinating fiber fabri- cation technique [ J ]. Biotechnol Adv,2010,28 (3) :325 - 347.
  • 8Wu H, Hu LB, Rowell MW, et al. Electrospun metal nanofiber webs as high-performance transparent electrode [ J ]. Nano Lett, 2010,10 (10) :4242 - 4248.
  • 9Ottani V, Raspanti M, Martini D, et al. Electromagnetic stimulation on the bone growth using backscattered electron imaging [ J ]. Mi- cron,2002,33(2) :121 -125.
  • 10Wu Y,Jiang W,Wen XT,et al. A novel calcium phosphate ceram- ic-magnetic nanoparticle composite as a potential bone substitute [ J]. Biomed Mater,2010,5(1) :15001.

同被引文献32

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部