期刊文献+

焊接力学不均匀性对316L焊缝扩展裂纹端部场的影响 被引量:8

Effect of Welded Mechanical Heterogeneity on Local Stress and Strain Ahead of Propagating Crack Tips in 316L Piping Welds
下载PDF
导出
摘要 由于接头组织和材料力学特性的不均匀,特别是当焊接热影响区的硬化对应力腐蚀破裂有重要的促进作用时,核电一回路316L管道焊接接头的应力腐蚀裂纹更容易扩展。考虑到焊接力学不均匀性,本文分析了恒应力强度因子(KI)和恒载荷条件下316L管道焊缝扩展裂纹尖端的局部应力应变场。研究结果表明,由于焊接力学不均匀性和裂纹长度的影响,恒KI和恒载荷条件下,扩展裂纹端部力学场有很大差异;恒载荷对扩展裂纹尖端应力应变的影响比恒KI要大得多。 Primary loop recirculation 316 L piping weld joints were more susceptible to stress corrosion cracking because the material and mechanical properties in welded joints were quite heterogeneous. Especially, it is provided that hardening in the welded heat affected zone plays an important role in promoting crack growth. Considering welded mechanical heterogeneity, the local stress and strain fields ahead of propagating crack tips in 316 L piping weld joints were analyzed under constant stress intensity factor(KI) and constant loading conditions. The results show that the mechanical fields of propagating crack tips behave quite different under constant KIand constant loading because of welded mechanical heterogeneity and advanced crack length, which demonstrate that the effect of constant loading on the stress and strain ahead of the propagating crack tip is bigger than that of constant KI.
出处 《热加工工艺》 CSCD 北大核心 2015年第9期181-184,共4页 Hot Working Technology
基金 国家自然科学基金项目(51475362) 学科点专项科研基金资助项目(20136121110001) 陕西省教育厅科研计划项目(2013JK1006)
关键词 应力腐蚀破裂 焊接力学不均匀性 扩展裂纹 应力强度因子 stress corrosion cracking welded mechanical heterogeneity propagating crack stress intensity factor
  • 相关文献

参考文献5

  • 1王浩,李莉.SUS304不锈钢薄板GTAW对接接头焊接变形的有限元预测[J].热加工工艺,2013,42(1):177-179. 被引量:3
  • 2Lu Zh P, Shoji T, Xue H, et al. Synergistic effects of local strain-hardening and dissolved oxygen on stress corrosion cracking of 316NG weld heat-affected zones in simulated BWREnvironments[J]. Journal of Nuclear Materials, 2012, 423(1/3) : 28-39.
  • 3Hou J, Shoji T, Lu Zh P, et al. Residual strain measurement and grain boundary characterization in the heat affected zone of a weld joint between Alloy 690TT and Alloy 52 [J]. Nuclear Materials, 2010,397(1/3): 109-115.
  • 4Lu Zh P, Shoji T, Takeda Y, et al. Effects of loading mode and water chemistry on stress corrosion crack growth behavior of 316L HAZ and weld metal materials in high temperature pure water [J]. Corrosion Science, 2008, 50(3): 625-638.
  • 5Ueda Y, Shi Y, Sun S. Effects of crack depth and strength mismatching on the relation between J-integral and CTOD for welded tensile specimens[J]. Transactions ofJWRI, 1997,26(2): 133-140.

二级参考文献6

  • 1中国机械工程学会焊接学会.焊接手册[M].北京.机械工业出版社.2007.
  • 2Soul F A, Zhang Y H. Numerical study on stress induced cambering distortion and its mitigation in welded titanium alloy sheet[J]. Sci Technol Weld Join, 2006,11:688-93.
  • 3Tsirkas S A, Papanikos P, Kermanidis T. Numerical simulation of the laser welding process in butt-joint specimens [J]. J Mater Proc Tech, 2003, 134: 59-69.
  • 4Deng D A. Study of welding inherent deformations in thin plates based on finite element analysis using interactive substructure method [J]. Mater Des, 2009, 30: 359-366.
  • 5Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources [J]. Metal Tran B, 1984, 15: 299-305.
  • 6李金阁,凌泽民,王高见.ZS125-70型摩托车平叉轴管与侧管CO_2焊数值模拟[J].热加工工艺,2011,40(21):164-167. 被引量:5

共引文献2

同被引文献45

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部