期刊文献+

自适应神经模糊推理系统在医学领域的应用 被引量:1

Adaptive Neural-Fuzzy Inference System in Medical Practice
原文传递
导出
摘要 医疗领域中存在着很多不确定性,给疾病诊断预测等医疗活动带来了极大困难。模糊神经网络(neural-fuzzy system,NFS)很好地结合了人工神经网络和模糊逻辑的优点,成为一种能从数据中获取知识,并能将知识以模糊规则形式表达的新型人工智能模型。因其强大的分类能力和处理模糊信息能力,模糊神经网络模型被越来越多地应用到医学领域。其中自适应神经模糊推理系统(adaptive neural-fuzzy inference system,ANFIS)是模糊神经网络中应用最多的一种,本文就ANFIS在医学领域的应用进行综述。 There are a great number of uncertainties in medical practice, causing considerable difficulties in medical activities such as diagnosis and prognostic prediction. Neural-fuzzy system(NFS) combines the advantages of artificial neural networks and fuzzy logic very well, and has become a new type of artificial intelligence model which is capable of acquiring knowledge from data and expressing it in the form of fuzzy rules. Because of its strong capability of classification and processing fuzzy information, NFS is more and more used in medical practice. Adaptive neural-fuzzy inference system(ANFIS) is one of the most popular forms of NFS. This review focuses on the use of ANFIS in medical practice.
出处 《中国胸心血管外科临床杂志》 CAS CSCD 2015年第3期252-256,共5页 Chinese Journal of Clinical Thoracic and Cardiovascular Surgery
基金 国家"十二五"科技支撑计划项目(2011BAI11B18)~~
关键词 模糊神经网络 自适应神经模糊推理系统(ANFIS) 医学 应用 Neural-fuzzy system Adaptive neural-fuzzy inference system(ANFIS) Medicine Application
  • 相关文献

参考文献4

二级参考文献42

  • 1田福英,叶志前.脑电图分析方法在麻醉监测中应用的发展现状[J].生物医学工程学杂志,2005,22(3):645-648. 被引量:3
  • 2李敏,叶志前.基于模糊神经网络的麻醉深度的监测研究[J].中国医疗器械杂志,2006,30(4):253-255. 被引量:5
  • 3Ch. Mies, Ch. Bauer, G. Ackermann, W. Baumler, C.Ables, C.C. Puntonet, M.R. Alvarez, E.W. Lang, Can ICA help classify skin cancer and benign lesions, LNCS 2001 (2085) 328-335.
  • 4J.D. Carey, Skin cancer, Health Smart Quarterly Health Newsletter, The University of New Mexico 12 (2003) 1-3.
  • 5E. Ros, M.M. Rodriguez, S. Mota, J.L. Bernier, I. Rojas, C.G. Puntonet, E.W. Lang, Skin lesions diagnosis based on fluorescence image processing, simple parameters scanning, LNCS 2562 (2003) 858-867.
  • 6S. Odeh, E. Ros, I. Rojas, J. Palomares, Skin lesion diagnosis using fluorescence images, Proceeding of ICIAR06, International Conference on Image Analysis and Recognition, 2006, pp. 648-659.
  • 7J. Canny, A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI, 1986, pp. 679-698.
  • 8J.R. Parker, Algorithms for Image Processing and Computer Vision, John Wiley & Sons, 1997, pp. 23-29.
  • 9J.S. Lim, Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall, 1990, pp. 478-488.
  • 10R. Gonzalez, R. Woods, Digital Image Processing, Addison Wesley, 1992, pp.414-428.

共引文献24

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部