期刊文献+

自主致密局部特征尺度分解方法及其应用 被引量:4

Method of Autonomous Compact Local Characteristic-scale Decomposition and Its Applications
下载PDF
导出
摘要 针对局部特征尺度分解(LCD)的模态混叠问题,提出了自主致密局部特征尺度分解(ACLCD)方法。该方法通过确定待分解信号的最小信号极值尺度来度量其信号尺度,采用新增伪极值点均匀化信号尺度,可有效抑制模态混叠的产生;引入了最优致密系数的概念,并给出了最优致密系数评价准则。研究了ACLCD方法的原理,通过仿真信号将ACLCD与LCD和EMD进行分析对比,结果表明,ACLCD在提高分量精确性和正交性、抑制模态混叠等方面具有一定的优越性。将ACLCD方法应用于转子碰摩故障的诊断,结果表明该方法有效。 The least extrema scale was defined to measure other signal scales for restraining the mode mixing problem of LCD,and by adding pseudo-extrema autonomously to homogenize the signal scales.Based on this,a novel method of ACLCD was proposed.Compact coefficient was introduced, and the optimal evaluation criteria of compact coefficient was given.The paper firstly studied the the-ory of ACLCD,then simulation experiments were used to compare the performance of ACLCD with LCD and empirical mode decomposition(EMD).The results indicate that ACLCD is more efficient in improving the veracity,orthogonality in components and inhibiting the mode mixing than that of LCD and EMD.Finally,the proposed method was applied to diagnose the rotor with rub-impact fault suc-cessfully which indicates the effectiveness of ACLCD.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2015年第11期1464-1470,共7页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51375152) 湖南省科技计划资助项目(2014WK3005)
关键词 自主致密局部特征尺度分解 局部特征尺度分解 模态混叠 最优致密系数 内禀尺度分量 autonomous compact local characteristic-scale decomposition(ACLCD) local charac-teristic-scale decomposition(LCD) mode mixing optimal compact coefficient intrinsic scale compo-nent(ISC)
  • 相关文献

参考文献15

二级参考文献99

共引文献299

同被引文献41

  • 1Hong H. Liang M. Fault Severity Assessment forRolling Element Bearings Using the Lempel - ZivComplexity and Continuous Wavelet Transform[J].Journal of Sound and Vibration,2009,320(1/2):452-468.
  • 2Yang Yu,Cheng Junsheng,Zhang Kang.An Ensem-ble Local Means Decomposition Method and ItsApplication to Local Rub-impact Fault Diagnosis ofthe Rotor Systems [J]. Measurement,2012 , 45 (3):561-570.
  • 3Zheng Jinde, Cheng Junsheng, Yang Yu. A RollingBearing Fault Diagnosis Approach Based on LCDand Fuzzy Entropy [J]. Mechanism and MachineTheory,2013,70:441-453.
  • 4Zheng Jinde, Cheng Junsheng, Yang Yu. General-ized Empirical Mode Decomposition and Its Appli-cations to Rolling Element Bearing Fault Diagnosis[J]. Mechanical Systems and Signal Processing,2013, 40(1):136-153.
  • 5Wu Zhaohua,Huang N E. Ensemble EmpiricalMode Decomposition: a Noise - assisted DataAnalysis Method [J]. Advances in Adaptive DataAnalysis, 2009,1(1) : 1-41.
  • 6Huang N E, Shen Zheng, Long S R,et al. TheEmpirical Mode Decomposition and the HilbertSpectrum for Nonlinear and Non-stationary TimeSeries Analysis[J]. Proceedings of the Royal Soci-ety of London. Series A: Mathematical, Physicaland Engineering Sciences, 1998,454 (1971) : 903 -995.
  • 7Smith J S. The Local Mean Decomposition and ItsApplication to EEG Perception Data[J]. Journal ofthe Royal Society Interface,2005 ,2(5) ;443-454.
  • 8Rilling G,Flandrin P,Goncalves P. On EmpiricalMode Decomposition and Its Algorithms [C]//IEEE - EURASIP Workshop on Nonlinear Signaland Image Processing. Grado, 2003 : 1-5.
  • 9COHEN L. Time-frequency distribution-a review [ J ]. Proceedings of the IEEE, 1989, 77(7) : 941-981.
  • 10CLASSEN T A C M, MECKLENBRAUKER W F G. The aliasing problem in discrete-time Wigner distribution [ J 3. IEEE Transactions on Acoustics, Speech and Signal Pro- cessing, 1953, 31(5) : 1067-1072.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部